Read The Selfish Gene Online

Authors: Richard Dawkins

The Selfish Gene (8 page)

BOOK: The Selfish Gene
11.96Mb size Format: txt, pdf, ePub
ads

 

This comes perilously close to being a circular argument, since the existence of sexuality is a precondition for the whole chain of reasoning that leads to the gene being regarded as the unit of selection. I believe there are ways of escaping from the circularity, but this book is not the place to pursue the question. Sex exists. That much is true. It is a consequence of sex and crossing-over that the small genetic unit or gene can be regarded as the nearest thing we have to a fundamental, independent agent of evolution.

 

Sex is not the only apparent paradox that becomes less puzzling the moment we learn to think in selfish gene terms. For instance, it appears that the amount of DNA in organisms is more than is strictly necessary for building them: a large fraction of the DNA is never translated into protein. From the point of view of the individual organism this seems paradoxical. If the 'purpose' of DNA is to supervise the building of bodies, it is surprising to find a large quantity of DNA which does no such thing. Biologists are racking their brains trying to think what useful task this apparently surplus DNA is doing. But from the point of view of the selfish genes themselves, there is no paradox. The true 'purpose' of DNA is to survive, no more and no less. The simplest way to explain the surplus DNA is to suppose that it is a parasite, or at best a harmless but useless passenger, hitching a ride in the survival machines created by the other DNA.

 

Some people object to what they see as an excessively gene-centred view of evolution. After all, they argue, it is whole individuals with all their genes who actually live or die. I hope I have said enough in this chapter to show that there is really no disagreement here. Just as whole boats win or lose races, it is indeed individuals who live or die, and the immediate manifestation of natural selection is nearly always at the individual level. But the long-term consequences of non-random individual death and reproductive success are manifested in the form of changing gene frequencies in the gene pool. With reservations, the gene pool plays the same role for the modern replicators as the primeval soup did for the original ones. Sex and chromosomal crossing-over have the effect of preserving the liquidity of the modern equivalent of the soup. Because of sex and crossing-over the gene pool is kept well stirred, and the genes partially shuffled. Evolution is the process by which some genes become more numerous and others less numerous in the gene pool. It is good to get into the habit, whenever we are trying to explain the evolution of some characteristic, such as altruistic behaviour, of asking ourselves simply: 'what effect will this characteristic have on frequencies of genes in the gene pool?' At times, gene language gets a bit tedious, and for brevity and vividness we shall lapse into metaphor. But we shall always keep a sceptical eye on our metaphors, to make sure they can be translated back into gene language if necessary.

 

As far as the gene is concerned, the gene pool is just the new sort of soup where it makes its living. All that has changed is that nowadays it makes its living by cooperating with successive groups of companions drawn from the gene pool in building one mortal survival machine after another. It is to survival machines themselves, and the sense in which genes may be said to control their behaviour, that we turn in the next chapter.

 

 

The Selfish Gene
4. The Gene Machine.

 

Survival machines began as passive receptacles for the genes, providing little more than walls to protect them from the chemical warfare of their rivals and the ravages of accidental molecular bombardment. In the early days they 'fed' on organic molecules freely available in the soup. This easy life came to an end when the organic food in the soup, which had been slowly built up under the energetic influence of centuries of sunlight, was all used up. A major branch of survival machines, now called plants, started to use sunlight directly themselves to build up complex molecules from simple ones, re-enacting at much higher speed the synthetic processes of the original soup. Another branch, now known as animals, 'discovered' how to exploit the chemical labours of the plants, either by eating them, or by eating other animals. Both main branches of survival machines evolved more and more ingenious tricks to increase their efficiency in their various ways of life, and new ways of life were continually being opened up. Sub-branches and sub-sub-branches evolved, each one excelling in a particular specialized way of making a living: in the sea, on the ground, in the air, underground, up trees, inside other living bodies. This sub-branching has given rise to the immense diversity of animals and plants which so impresses us today.

 

Both animals and plants evolved into many-celled bodies, complete copies of all the genes being distributed to every cell. We do not know when, why, or how many times independently, this happened. Some people use the metaphor of a colony, describing a body as a colony of cells. I prefer to think of the body as a colony of genes, and of the cell as a convenient working unit for the chemical industries of the genes.

 

Colonies of genes they maybe but, in their behaviour, bodies have undeniably acquired an individuality of their own. An animal moves as a coordinated whole, as a unit. Subjectively I feel like a unit, not a

 

colony
. This is to be expected. Selection has favoured genes that cooperate with others. In the fierce competition for scarce resources, in the relentless struggle to eat other survival machines, and to avoid being eaten, there must have been a premium on central coordination rather than anarchy within the communal body. Nowadays the intricate mutual co-evolution of genes has proceeded to such an extent that the communal nature of an individual survival machine is virtually unrecognizable. Indeed many biologists do not recognize it, and will disagree with me.

 

Fortunately for what journalists would call the 'credibility' of the rest of this book, the disagreement is largely academic. Just as it is not convenient to talk about quanta and fundamental particles when we discuss the workings of a car, so it is often tedious and unnecessary to keep dragging genes in when we discuss the behaviour of survival machines. In practice it is usually convenient, as an approximation, to regard the individual body as an agent 'trying' to increase the numbers of all its genes in future generations. I shall use the language of convenience. Unless otherwise stated, 'altruistic behaviour' and 'selfish behaviour' will mean behaviour directed by one animal body toward another.

 

This chapter is about behaviour-the trick of rapid movement which has been largely exploited by the animal branch of survival machines. Animals became active go-getting gene vehicles: gene machines. The characteristic of behaviour, as biologists use the term, is that it is fast. Plants move, but very slowly. When seen in highly speeded-up film, climbing plants look like active animals. But most plant movement is really irreversible growth. Animals, on the other hand, have evolved ways of moving hundreds of thousands of times faster. Moreover, the movements they make are reversible, and repeatable an indefinite number of times.

 

The gadget that animals evolved to achieve rapid movement was the muscle. Muscles are engines which, like the steam engine and the internal combustion engine, use energy stored in chemical fuel to generate mechanical movement. The difference is that the immediate mechanical force of a muscle is generated in the form of tension, rather than gas pressure as in the case of the steam and internal combustion engines. But muscles are like engines in that they often exert their force on cords, and levers with hinges. In us the levers are known as bones, the cords as tendons, and the hinges as joints. Quite a lot is known about the exact molecular ways in which muscles work, but I find more interesting the question of how muscle contractions are timed.

 

Have you ever watched an artificial machine of some complexity, a knitting or sewing machine, a loom, an automatic bottling factory, or a hay baler? Motive power comes from somewhere, an electric motor say, or a tractor. But much more baffling is the intricate timing of the operations. Valves open and shut in the right order, steel fingers deftly tie a knot round a hay bale, and then at just the right moment a knife shoots out and cuts the string. In many artificial machines timing is achieved by that brilliant invention the cam. This translates simple rotary motion into a complex rhythmic pattern of operations by means of an eccentric or specially shaped wheel. The principle of the musical box is similar. Other machines such as the steam organ and the pianola use paper rolls or cards with holes punched in a pattern. Recently there has been a trend towards replacing such simple mechanical timers with electronic ones. Digital computers are examples of large and versatile electronic devices which can be used for generating complex timed patterns of movements. The basic component of a modern electronic machine like a computer is the semiconductor, of which a familiar form is the transistor.

 

Survival machines seem to have bypassed the cam and the punched card altogether. The apparatus they use for timing their movements has more in common with an electronic computer, although it is strictly different in fundamental operation. The basic unit of biological computers, the nerve cell or neurone, is really nothing like a transistor in its internal workings. Certainly the code in which neurones communicate with each other seems to be a little bit like the pulse codes of digital computers, but the individual neurone is a much more sophisticated data-processing unit than the transistor. Instead of just three connections with other components, a single neurone may have tens of thousands. The neurone is slower than the transistor, but it has gone much further in the direction of miniaturization, a trend which has dominated the electronics industry over the past two decades. This is brought home by the fact that there are some ten thousand million neurones in the human brain: you could pack only a few hundred transistors into a skull.

 

Plants have no need of the neurone, because they get their living without moving around, but it is found in the great majority of animal groups. It may have been 'discovered' early in animal evolution, and inherited by all groups, or it may have been rediscovered several times independently.

 

Neurones are basically just cells, with a nucleus and chromosomes like other cells. But their cell walls are drawn out in long, thin, wire-like projections. Often a neurone has one particularly long 'wire' called the axon. Although the width of an axon is microscopic, its length may be many feet: there are single axons which run the whole length of a giraffe's neck. The axons are usually bundled together in thick multi-stranded cables called nerves. These lead from one part of the body to another carrying messages, rather like trunk telephone cables. Other neurones have short axons, and are confined to dense concentrations of nervous tissue called ganglia, or, when they are very large, brains. Brains may be regarded as analogous in function to computers. They are analogous in that both types of machine generate complex patterns of output, after analysis of complex patterns of input, and after reference to stored information.

 

The main way in which brains actually contribute to the success of survival machines is by controlling and coordinating the contractions of muscles. To do this they need cables leading to the muscles, and these are called motor nerves. But this leads to efficient preservation of genes only if the timing of muscle contractions bears some relation to the timing of events in the outside world. It is important to contract the jaw muscles only when the jaws contain something worth biting, and to contract the leg muscles in running patterns only when there is something worth running towards or away from. For this reason, natural selection favoured animals that became equipped with sense organs, devices which translate patterns of physical events in the outside world into the pulse code of the neurones. The brain is connected to the sense organs-eyes, ears, taste-buds, etc.-by means of cables called sensory nerves. The workings of the sensory systems are particularly baffling, because they can achieve far more sophisticated feats of pattern-recognition than the best and most expensive man-made machines; if this were not so, all typists would be redundant, superseded by speech-recognizing machines, or machines for reading handwriting. Human typists will be needed for many decades yet.

 

There may have been a time when sense organs communicated more or less directly with muscles; indeed, sea anemones are not far from this state today, since for their way of life it is efficient. But to achieve more complex and indirect relationships between the timing of events in the outside world and the timing of muscular contractions, some kind of brain was needed as an intermediary. A notable advance was the evolutionary 'invention' of memory. By this device, the timing of muscle contractions could be influenced not only by events in the immediate past, but by events in the distant past as well. The memory, or store, is an essential part of a digital computer too. Computer memories are more reliable than human ones, but they are less capacious, and enormously less sophisticated in their techniques of information-retrieval.

 

One of the most striking properties of survival-machine behaviour is its apparent purposiveness. By this I do not just mean that it seems to be well calculated to help the animal's genes to survive, although of course it is. I am talking about a closer analogy to human purposeful behaviour. When we watch an animal 'searching' for food, or for a mate, or for a lost child, we can hardly help imputing to it some of the subjective feelings we ourselves experience when we search. These may include 'desire' for some object, a 'mental picture' of the desired object, an 'aim' or 'end in view'. Each one of us knows, from the evidence of our own introspection, that, at least in one modern survival machine, this purposiveness has evolved the property we call 'consciousness'. I am not philosopher enough to discuss what this means, but fortunately it does not matter for our present purposes because it is easy to talk about machines that behave as if motivated by a purpose, and to leave open the question whether they actually are conscious. These machines are basically very simple, and the principles of unconscious purposive behaviour are among the commonplaces of engineering science. The classic example is the Watt steam governor.

 

The fundamental principle involved is called negative feedback, of which there are various different forms. In general what happens is this. The 'purpose machine', the machine or thing that behaves as if it had a conscious purpose, is equipped with some kind of measuring device which measures the discrepancy between the current state of things, and the 'desired' state. It is built in such a way that the larger this discrepancy is, the harder the machine works. In this way the machine will automatically tend to reduce the discrepancy-this is why it is called negative feedback-and it may actually come to rest if the 'desired' state is reached. The Watt governor consists of a pair of balls which are whirled round by a steam engine. Each ball is on the end of a hinged arm. The faster the balls fly round, the more does centrifugal force push the arms towards a horizontal position, this tendency being resisted by gravity. The arms are connected to the steam valve feeding the engine, in such a way that the steam tends to be shut off when the arms approach the horizontal position. So, if the engine goes too fast, some of its steam will be shut off, and it will tend to slow down. If it slows down too much, more steam will automatically be fed to it by the valve, and it will speed up again. Such purpose machines often oscillate due to over-shooting and time-lags, and it is part of the engineer's art to build in supplementary devices to reduce the oscillations.

 

The 'desired' state of the Watt governor is a particular speed of rotation. Obviously it does not consciously desire it. The 'goal' of a machine is simply defined as that state to which it tends to return. Modern purpose machines use extensions of basic principles like negative feedback to achieve much more complex 'lifelike' behaviour. Guided missiles, for example, appear to search actively for their target, and when they have it in range they seem to pursue it, taking account of its evasive twists and turns, and sometimes even 'predicting' or 'anticipating' them. The details of how this is done are not worth going into. They involve negative feedback of various kinds, 'feed-forward', and other principles well understood by engineers and now known to be extensively involved in the working of living bodies. Nothing remotely approaching consciousness needs to be postulated, even though a layman, watching its apparently deliberate and purposeful behaviour, finds it hard to believe that the missile is not under the direct control of a human pilot.

 

It is a common misconception that because a machine such as a guided missile was originally designed and built by conscious man, then it must be truly under the immediate control of conscious man. Another variant of this fallacy is 'computers do not really play chess, because they can only do what a human operator tells them'. It is important that we understand why this is fallacious, because it affects our understanding of the sense in which genes can be said to 'control' behaviour. Computer chess is quite a good example for making the point, so I will discuss it briefly.

BOOK: The Selfish Gene
11.96Mb size Format: txt, pdf, ePub
ads

Other books

Destiny's Magic by Martha Hix
Love Among the Llamas by Reed, Annie
Stone Cold by Andrew Lane
War in My Town by E. Graziani
Las guerras de hierro by Paul Kearney