A New History of Life (55 page)

Read A New History of Life Online

Authors: Peter Ward

BOOK: A New History of Life
3.5Mb size Format: txt, pdf, ePub

  
7.
   P. Davies,
The Fifth Miracle: The Search for the Origin and Meaning of Life.
(New York: Penguin Press, 1998), 260.

  
8.
   P. Ward,
Life as We Do Not Know It
(New York: Viking Books, 2005).

  
9.
   W. Bains, “The Parts List of Life,”
Nature Biotechnology
19 (2001): 401–2; W. Bains, “Many Chemistries Could Be Used to Build Living Systems,”
Astrobiology
, 4, no. 2 (2004): 137–67; and N. R. Pace, “The Universal Nature of Biochemistry,”
Proceedings of the National Academy of Sciences of the Unites States of America
98, no. 3 (2001): 805–808; S. A. Benner et al., “Setting the Stage: The History, Chemistry, and Geobiology Behind RNA,”
Cold Spring Harbor Perspectives in Biology
4, no. 1 (2012): 7–19; M. P. Robertson and G. F. Joyce, “The Origins of the RNA World,”
Cold Spring Harbor Perspectives in
Biology
4, no. 5 (2012); C. Anastasi et al., “RNA: Prebiotic Product, or Biotic Invention?”
Chemistry and Biodiversity
4, no. 4 (2007): 721–39; T. S. Young and P. G. Schultz, “Beyond the Canonical 20 Amino Acids: Expanding the Genetic Lexicon,”
The Journal of Biological Chemistry
285, no. 15 (2010): 11039–44.

10.
   F. Dyson,
Origins of Life
, 2nd ed. (Cambridge: Cambridge University Press, 1999), 100

11.
   Nick Lane is an iconoclast with rather unerring judgment. For a good take on energy complexity, see N. Lane, “Bioenergetic Constraints on the Evolution of Complex Life,” in P. J. Keeling and E. V. Koonin, eds.,
The Origin and Evolution of Eukaryotes. Cold Spring Harbor Perspectives in Biology
(2013).

12.
   J. Banavar and A. Maritan. “Life on Earth: The Role of Proteins,” J. Barrow and S. Conway Morris,
Fitness of the Cosmos for Life
(Cambridge: Cambridge University Press, 2007), 225–55.

13.
   E. Schneider and D. Sagan,
Into the Cool: Energy Flow, Thermodynamics, and Life
(Chicago, IL: University of Chicago Press, 2005).

CHAPTER IV: FORMING LIFE: 4.2(?)–3.5 GA

  
1.
   Dr. D. R. Williams, Viking Mission to Mars, NASA, December 18, 2006.

  
2.
   
www.space.com/18234-viking-1.html
.

  
3.
   
ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740026174.pdf
. Also see R. Navarro-Gonzáles et al., “Reanalysis of the Viking Results Suggests Perchlorate and Organics at Midlatitudes on Mars,”
Journal of Geophysical Research
115 (2010).

  
4.
   P. Rincon, “Oldest Evidence of Photosynthesis,” BBC.com, December 17, 2003 and S. J. Mojzsis et al., “Evidence for Life on Earth Before 3,800 Million Years Ago,”
Nature
384 (1996): 55–59; M. Schidlowski, “A 3,800-Million-Year-Old Record of Life from Carbon in Sedimentary Rocks,”
Nature
333 (1988): 313–18; M. Schidlowski et al., “Carbon Isotope Geochemistry of the 3.7 × 10
9
Yr Old Isua Sediments, West Greenland: Implications for the Archaean Carbon and Oxygen Cycles,”
Geochimica et Cosmochimica Acta
43 (1979): 189–99.

  
5.
   K. Maher and D. Stevenson. “Impact Frustration of the Origin of Life,”
Nature
331 (1988): 612–14.

  
6.
   R. Dalton. “Fresh Study Questions Oldest Traces of Life in Akilia Rock,”
Nature
429 (2004): 688. This work is continuing; see Papineau et al., “Ancient Graphite in the Eoarchean Quartz-Pyroxene Rocks from Akilia in Southern West Greenland I: Petrographic and Spectroscopic Characterization,”
Geochimica et Cosmochimica Acta
74, no. 20 (2010): 5862–83.

  
7.
   J. W. Schopf, “Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life,”
Science
260, no. 5108 (1993): 640–46.

  
8.
   M. D. Brasier et al., “Questioning the Evidence for Earth’s Oldest Fossils,”
Nature
416 (2002): 76–81.

  
9.
   D. Wacey et al., “Microfossils of Sulphur-Metabolizing Cells in 3.4-Billion-Year-Old Rocks of Western Australia,”
Nature Geoscience
4 (2011): 698–702.

10.
   M. D. Brasier,
Secret Chambers: The Inside Story of Cells and Complex Life
(New York: Oxford University Press, 2012), 298.

11.
   “Ancient Earth May Have Smelled Like Rotten Eggs,”
Talk of the Nation
, National Public Radio, May 3, 2013.

12.
   
www.nasa.gov/mission_pages/msl/#.U4Izyxa9yxo
.

13.
   
www.abc.net.au/science/articles/2011/08/22/3299027.htm
.

14.
   J. Haldane,
What Is Life
? (New York: Boni and Gaer, 1947), 53.

15.
   L. Orgel,
The Origins of Life: Molecules and Natural Selection
(Hoboken, NJ: John Wiley and Sons, 1973).

16.
   J. A. Baross and J. W. Deming, “Growth at High Temperatures: Isolation and Taxonomy, Physiology, and Ecology,” in
The Microbiology of Deep-sea Hydrothermal Vents
, D. M. Karl, ed. (Boca Raton: CRC Press, 1995), 169–217, and E. Stueken et al., “Did Life Originate in a Global Chemical Reactor?”
Geobiology
11, no.2 (2013); K. O. Stetter, “Extremophiles and Their Adaptation to Hot Environments,”
FEBS Letters
452, nos. 1–2 (1999): 22–25. K. O. Stetter, “Hyperthermophilic Microorganisms,” in
Astrobiology: The Quest for the Conditions of Life
, G. Horneck and C. Baumstark-Khan, eds. (Berlin: Springer, 2002), 169–84.

17.
   Y. Shen and R. Buick, “The Antiquity of Microbial Sulfate Reduction,”
Earth Science Reviews
64 (2004): 243–272.

18.
   S. A. Benner, “Understanding Nucleic Acids Using Synthetic Chemistry,”
Accounts of Chemical Research
37, no. 10 (2004): 784–97; S. A. Benner, “Phosphates, DNA, and the Search for Nonterrean life: A Second Generation Model for Genetic Molecules,”
Bioorganic Chemistry
30, no. 1 (2002): 62–80.

19.
   G. Wächtershäuser, “Origin of Life: Life as We Don’t Know It,”
Science
, 289, no. 5483 (2000): 1307–08; G. Wächtershäuser, “Evolution of the First Metabolic Cycles,”
Proceedings of the National Academy of Sciences
87, no. 1 (1990): 200–204; G. Wächtershäuser, “On the Chemistry and Evolution of the Pioneer Organism,”
Chemistry & Biodiversity
4, no. 4 (2007): 584–602.

20.
   N. Lane,
Life Ascending: The Ten Great Inventions of Evolution
(New York: W. W. Norton & Company, 2009).

21.
   W. Martin and M. J. Russell, “On the Origin of Biochemistry at an Alkaline Hydrothermal Vent,”
Philosophical Transactions of the Royal Society B-Biological Sciences
362, no. 1486 (2007): 1887–925.

22.
   C. R. Woese, “Bacterial Evolution,”
Microbiological Reviews
51, no. 2 (1987): 221–71; C. R. Woese, “Interpreting the Universal Phylogenetic Tree,”
Proceedings of the National Academy of Sciences
97 (2000): 8392–96.

23.
   S. A. Benner and D. Hutter, “Phosphates, DNA, and the Search for Nonterrean Life: A Second Generation Model for Genetic Molecules,”
Bioorganic Chemistry
30 (2002): 62–80; S. Benner et al., “Is There a Common Chemical Model for Life in the Universe?”
Current Opinion in Chemical Biology
8, no. 6 (2004): 672–89.

24.
   A. Lazcano, “What Is Life? A Brief Historical Overview,”
Chemistry and Biodiversity
5, no. 4 (2007): 1–15.

25.
   B. P. Weiss et al., “A Low Temperature Transfer of ALH84001 from Mars to Earth,”
Science
290, no. 5492, (2000): 791–95. J. L. Kirschvink and B. P. Weiss, “Mars, Panspermia, and the Origin of Life: Where Did It All Begin?”
Palaeontologia Electronica
4, no. 2 (2001): 8–15. J. L. Kirschvink et al., “Boron, Ribose, and a Martian Origin for Terrestrial Life,”
Geochimica et Cosmochimica Acta
70, no. 18 (2006): A320.

26.
   C. McKay, “An Origin of Life on Mars,”
Cold Spring Harbor Perspectives in Biology
2, no. 4 (2010). J. Kirschvink et al., “Mars, Panspermia, and the Origin of Life: Where Did It All Begin?”
Palaeolontogia Electronica
4, no. 2 (2002): 8–15.

27.
   D. Deamer,
First Life: Discovering the Connections Between Stars, Cells, and How Life Began
(Oakland: University of California Press, 2012), 286. But also see the great new work from our friend Nick Lane: N. Lane and W. F. Martin, “The Origin of Membrane Bioenergetics,”
Cell
151, no. 7 (2012): 1406–16.

28.
   
www.nobelprize.org/mediaplayer/index.php/?id=1218
.

CHAPTER V: FROM ORIGIN TO OXYGENATION: 3.5–2.0 GA

  
1.
   J. Raymond and D. Segre, “The Effect of Oxygen on Biochemical Networks and the Evolution of Complex Life,”
Science
311 (2006): 1764–67.

  
2.
   J. F. Kasting and S. Ono “Palaeoclimates: The first Two Billion Years,”
Philosophical Transactions of the Royal Society B-Biological Sciences
361 (2006): 917–29

  
3.
   P. Cloud, “Paleoecological Significance of Banded-Iron Formation,”
Economic Geology
68 (1973): 1135–43.

  
4.
   M. C. Liang et al., “Production of Hydrogen Peroxide in the Atmosphere of a Snowball Earth and the Origin of Oxygenic Photosynthesis,”
Proceedings of the National Academy of Sciences
103 (2006): 18896–99.

  
5.
   J. E. Johnson et al., “Manganese-Oxidizing Photosynthesis Before the Rise of Cyanobacteria,”
Proceedings of the National Academy of Sciences
110, no. 28 (2013): 11238–43; J. E. Johnson et al., “O
2
Constraints from Paleoproterozoic Detrital Pyrite and Uraninite,”
Geological Society of America Bulletin
(2014), doi: 10.1130-B30949.1.

  
6.
   J. E. Johnson et al., “O2 Constraints from Paleoproterozoic Detrital Pyrite and Uraninite,”
Geological Society of America Bulletin
, published online ahead of print on February 27, 2014, doi: 10.1130/B30949.1.

  
7.
   R. E. Kopp et al., “Was the Paleoproterozoic Snowball Earth a Biologically Triggered Climate Disaster?”
Proceedings of the National Academy of Sciences
102 (2005): 11131–36.

  
8.
   J. E. Johnson et al., “Manganese-Oxidizing Photosynthesis Before the Rise of Cyanobacteria.”

  
9.
   Ibid.

10.
   R. E. Kopp and J. L. Kirschvink, “The Identification and Biogeochemical Interpretation of Fossil Magnetotactic Bacteria,”
Earth-Science Reviews
86 (2008): 42–61.

11.
   Ibid.

12.
   D. A. Evans et al., “Low-Latitude Glaciation in the Paleoproterozoic,”
Nature
386 (1997): 262–66.

13.
   J. L. Kirschvink et al. “Paleoproterozoic Snowball Earth: Extreme Climatic and Geochemical Global Change and Its Biological Consequences,”
Proceedings of the National Academy of Sciences
97 (2000): 1400–1405.

14.
   J. L. Kirschvink and R. E. Kopp, “Paleoproterozic Ice Houses and the Evolution of Oxygen-Mediating Enzymes: The Case for a Late Origin of Photosystem-II,”
Philosophical Transactions of the Royal Society of London, Series B
363, no. 1504 (2008): 2755–65.

15.
   D. A. D. Evans et al., “Paleomagnetism of a Lateritic Paleoweathering Horizon and Overlying Paleoproterozoic Red Beds from South Africa: Implications for the Kaapvaal Apparent Polar Wander Path and a Confirmation of Atmospheric Oxygen Enrichment,”
Journal of Geophysical Research
107, no. 2326.

CHAPTER VI: THE LONG ROAD TO ANIMALS: 2.0–1.0 GA

  
1.
   H. D. Holland “Early Proterozoic Atmospheric Change,” in S. Bengtson, ed.,
Early Life on Earth
(New York Columbia University Press, 1994), 237–44.

  
2.
   D. T. Johnston et al., “Anoxygenic Photosynthesis Modulated Proterozoic Oxygen and Sustained Earth’s Middle Age,”
Proceedings of the National Academy of Sciences
106, no. 40 (2009), 16925–29.

  
3.
   A. El Albani et al., “Large Colonial Organisms with Coordinated Growth in Oxygenated Environments 2.1 Gyr Ago,”
Nature
466, no. 7302 (2002): 100–104.2;
www.sciencedaily.com/releases/2010/06/100630171711.htm
.

  
4.
   D. E. Canfield et al., “Oxygen Dynamics in the Aftermath of the Great Oxidation of Earth’s Atmosphere,”
Proceedings of the National Academy of Sciences
110, no. 422 (2013).

  
5.
   A. H. Knoll,
Life on a Young Planet: The First Three Billion Years of Evolution on Earth
(Princeton: Princeton University Press, 2003).

CHAPTER VII: THE CRYOGENIAN AND THE EVOLUTION OF ANIMALS: 850–635 MA

  
1.
   R. C. Sprigg, “Early Cambrian ‘Jellyfishes’ of Ediacara, South Australia and Mount John, Kimberly District, Western Australia,”
Transactions of the Royal Society of South Australia
73 (1947): 72–99.

  
2.
   M. F. Glaessner, “Precambrian Animals,”
Scientific American
204, no. 3 (1961): 72–78.

Other books

Bellman & Black by Diane Setterfield
Green Rider by Kristen Britain
The Killing Kind by Bryan Smith
The Wish Pony by Catherine Bateson
The Affair: Week 8 by Beth Kery