Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, and School (11 page)

BOOK: Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, and School
11.99Mb size Format: txt, pdf, ePub

The little we do know suggests it is like a blender left running with the lid off. The information is literally sliced into discrete pieces as it enters the brain and splattered all over the insides of our mind. Stated formally, signals from different sensory sources are registered in separate brain areas. The information is fragmented and redistributed the instant the information is encountered. If you look at a complex picture, for example, your brain immediately extracts the diagonal lines from the vertical lines and stores them in separate areas. Same with color. If the picture is moving, the fact of its motion will be extracted and stored in a place separate than if the picture were static.

This separation is so violent, and so pervasive, it even shows up when we perceive exclusively human-made information, such as parts of a language. One woman suffered a stroke in a specific region of her brain and lost the ability to use written vowels. You could ask her to write down a simple sentence, such as “Your dog chased the cat,” and it would look like this:

Y_ _ r d _ g ch _ s _ d t h _ c _ t.

There would be a place for every letter, but the vowels’ spots were left blank! So we know that vowels and consonants are not stored in the same place. Her stroke damaged some kind of connecting wiring. That is exactly the opposite of the strategy a video recorder uses to record things. If you look closely, however, the blender effect goes much deeper. Even though she lost the ability to fill in the vowels of a given word, she has perfectly preserved the place where the vowel should go. Using the same logic, it appears that the place where a vowel should go is stored in a separate area from the vowel itself: Content is stored separately from its context/ container.

Hard to believe, isn’t it? The world appears to you as a unified whole. If the interior brain function tells us that it is not, how then do we keep track of everything? How do features that are registered separately, including the vowels and consonants in this sentence, become reunited to produce perceptions of continuity? It is a question that has bothered researchers for years and has been given its own special name. It is called the “binding problem,” from the idea that certain thoughts are bound together in the brain to provide continuity. We have no idea how the brain routinely and effortlessly gives us this illusion of stability.

Not that there aren’t hints. Close inspection of the initial moments of learning, the encoding stage, has supplied insights into not only the binding problem, but human learning of any kind. It is to these hints that we now turn.

automatic or stick shift?

To encode information means to convert data into, well, a code. Creating codes always involves translating information from one form into another, usually for transmission purposes, often to keep something secret. From a physiological point of view, encoding is the conversion of external sources of energy into electrical patterns the brain can understand. From a purely psychological point of view, it is the manner in which we apprehend, pay attention to, and ultimately organize information for storage purposes. Encoding, from both perspectives, prepares information for further processing. It is one of the many intellectual processes the Rain Man, Kim Peek, is so darn good at.

The brain is capable of performing several types of encoding. One type of encoding is automatic, which can be illustrated by talking about what you had for dinner last night, or The Beatles. The two came together for me on the evening of an amazing Paul McCartney concert I attended a few years ago. If you were to ask me what I had for dinner before the concert and what happened on stage, I could tell you about both events in great detail. Though the actual memory is very complex (composed of spatial locations, sequences of events, sights, smells, tastes, etc.), I did not have to write down some exhaustive list of its varied experiences, then try to remember the list in detail just in case you asked me about my evening. This is because my brain deployed a certain type of encoding scientists call automatic processing. It is the kind occurring with glorious unintentionality, requiring minimal attentional effort. It is very easy to recall data that have been encoded via this process. The memories seem bound all together into a cohesive, readily retrievable form.

Automatic processing has an evil twin that isn’t nearly so accommodating, however. As soon as the Paul McCartney tickets went on sale, I dashed to the purchasing website, which required my password for entrance. And I couldn’t remember my password! Finally, I found the right one and snagged some good seats. But trying to commit these passwords to memory is quite a chore, and I have a dozen or so passwords written on countless lists, scattered throughout my house. This kind of encoding, initiated deliberately, requiring conscious, energy-burning attention, is called effortful processing. The information does not seem bound together well at all, and it requires a lot of repetition before it can be retrieved with ease.

encoding test

There are still other types of encoding, three of which can be illustrated by taking the quick test below. Examine the capitalized word beside the number, then answer the question below it.

1) FOOTBALL
Does this word fit into the sentence “I turned around to fight _________”?

2) LEVEL
Does this word rhyme with evil?

3) MINIMUM
Are there any circles in these letters?

Answering each question requires very different intellectual skills, which researchers now know underlie different types of encoding. The first sentence illustrates what is called semantic encoding. Answering the question properly means paying attention to the definitions of words. The second sentence illustrates a process called phonemic encoding, involving a comparison between the sounds of words. The third is called structural encoding. It is the most superficial type, and it simply asks for a visual inspection of shapes. The type of encoding you perform on a given piece of information as it enters your head has a great deal to do with your ability to remember the information at a later date.

the electric slide

Encoding also involves transforming any outside stimulus into the electrical language of the brain, a form of energy transfer. All types of encoding initially follow the same pathway, and generally the same rules. For example, the night of Sir Paul’s concert, I stayed with a friend who owned a beautiful lake cabin inhabited by a very large and hairy dog. Late next morning, I decided to go out and play fetch with this friendly animal. I made the mistake of throwing the stick into the lake and, not owning a dog in those days, had no idea what was about to happen to me when the dog emerged.

Like some friendly sea monster from Disney, the dog leapt from the water, ran at me full speed, suddenly stopped, then started to shake violently. With no real sense that I should have moved, I got sopping wet.

What was occurring in my brain in those moments? As you know, the cortex quickly is consulted when a piece of external information invades our brains—in this case, a slobbery, soaking wet Labrador. I see the dog coming out of the lake, which really means I see patterns of photons bouncing off the Labrador. The instant those photons hit the back of my eyes, my brain converts them into patterns of electrical activity and routes the signals to the back of my head (the visual cortex in the occipital lobe). Now my brain can see the dog. In the initial moments of this learning, I have transformed the energy of light into an electrical language the brain fully understands. Beholding this action required the coordinated activation of thousands of cortical regions dedicated to visual processing.

The same is also true of other energy sources. My ears pick up the sound waves of the dog’s loud bark, and I convert them into the same brain-friendly electrical language to which the photons patterns were converted. These electrical signals will also be routed to the cortex, but to the auditory cortex instead of the visual cortex. From a nerve’s perspective, those two centers are a million miles away from each other. This conversion and this vastly individual routing are true of all the energy sources coming into my brain, from the feel of the sun on my skin to the instant I unexpectedly and unhappily got soaked by the dog shaking off lake water. Encoding involves all of our senses, and their processing centers are scattered throughout the brain.

This is the heart of the blender. In one 10-second encounter with an overly friendly dog, my brain recruited hundreds of different brain regions and coordinated the electrical activity of millions of neurons. My brain was recording a single episode, and doing so over vast neural differences, all in about the time it takes to blink your eyes.

Years have passed since I saw Sir Paul and got drenched by the dog. How do we keep track of it all? And how do we manage to manage these individual pieces for years? This binding problem, a phenomenon that keeps tabs on farflung pieces of information, is a great question with, unfortunately, a lousy answer. We really don’t know how the brain keeps track of things. We have given a name to the total number of changes in the brain that first encode information (where we have a record of that information). We call it an engram. But we might as well call them donkeys for all we understand about them.

The only insight we have into the binding problem comes from studying the encoding abilities of a person suffering from Balint’s Syndrome. This disorder occurs in people who have damaged both sides of their parietal cortex. The hallmark of people with Balint’s Syndrome is that they are functionally blind. Well, sort of. They can see objects in their visual field, but only one at a time (a symptom called simultanagnosia). Funny thing is, if you ask them where the single object is, they respond with a blank stare. Even though they can see it, they cannot tell you where it is. Nor can they tell you if the object is moving toward them or away from them.

They have no external spatial frame of reference upon which to place the objects they see, no way to bind the image to other features of the input. They’ve lost explicit spatial awareness, a trait needed in any type of binding exercise. That’s about as close as anyone has ever come to describing the binding problem at the neurological level. This tells us very little about how the brain solves the problem, of course. It only tells us about some of the areas involved in the process.

cracking the code

Despite their wide reach, scientists have found that all encoding processes have common characteristics. Three of these hold true promise for real-world applications in both business and education.

1) The more elaborately we encode information at the moment of learning, the stronger the memory.

When encoding is elaborate and deep, the memory that forms is much more robust than when encoding is partial and cursory. This can be demonstrated in an experiment you can do right now with any two groups of friends. Have them gaze at the list of words below for a few minutes.

Tractor
Green
Apple
Zero
Weather
Pastel
Airplane
Quickly
Jump
Ocean
Laugh
Nicely
Tall
Countertop

Tell Group #1 to determine the number of letters that have diagonal lines in them and the number that do not. Tell Group #2 to think about the meaning of each word and rate, on a scale of 1 to 10, how much they like or dislike the word. Take the list away, let a few minutes pass, and then ask each group to write down as many words as possible. The dramatic results you get have been replicated in laboratories around the world. The group that processes the meaning of the words always remembers two to three times as many words as the group that looked only at the architecture of the individual letters. We did a form of this experiment when we discussed levels of encoding and I asked you about the number of circles in the word … remember what it was? You can do a similar experiment using pictures. You can even do it with music. No matter the sensory input, the results are always the same.

At this point, you might be saying to yourself, “Well, duh!” Isn’t it obvious that the more meaning something has, the more memorable it becomes? Most researchers would answer, “Well, yeah!” The very naturalness of the tendency proves the point. Hunting for diagonal lines in the word “apple” is not nearly as elaborate as remembering wonderful Aunt Mabel’s apple pie, then rating the pie, and thus the word, a “10.” We remember things much better the more elaborately we encode what we encounter, especially if we can personalize it. The trick for business professionals, and for educators, is to present bodies of information so compelling that the audience does this on their own, spontaneously engaging in deep and elaborate encoding. It’s a bit weird if you think about it. Making something more elaborate usually means making it more complicated, which should be more taxing to a memory system. But it’s a fact: More complexity means greater learning.

2) A memory trace appears to be stored in the same parts of the brain that perceived and processed the initial input.

This idea is so counterintuitive that it may take an urban legend to explain it. At least, I think it’s an urban legend, coming from the mouth of the keynote speaker at a university administrators’ luncheon I once attended. He told the story of the wiliest college president he ever encountered. The institute had completely redone its grounds in the summer, resplendent with fountains and beautifully manicured lawns. All that was needed was to install the sidewalks and walkways where the students could access the buildings. But there was no design for these paths. The construction workers were anxious to install them and wanted to know what the design would be, but the wily president refused to give any. He frowned. “These asphalt paths will be permanent. Install them next year, please. I will give you the plans then.” Disgruntled but compliant, the construction workers waited.

Other books

Betrayal 2012 by Garr, Amber
Knot (Road Kill MC #2) by Marata Eros
Hush Little Baby by Caroline B. Cooney
Strapped Down by Nina G. Jones
Who's 'Bout to Bounce? by Deborah Gregory
The Lady of Han-Gilen by Judith Tarr