On The Origin Of Species (49 page)

Read On The Origin Of Species Online

Authors: Charles Darwin

BOOK: On The Origin Of Species
7.52Mb size Format: txt, pdf, ePub

With respect to the distinct species of the same genus, which on my theory must have spread from one parent-source; if we make the same allowances as before for our ignorance, and remember that some forms of life change most slowly, enormous periods of time being thus granted for their migration, I do not think that the difficulties are insuperable; though they often are in this case, and in that of the individuals of the same species, extremely grave.

As exemplifying the effects of climatal changes on distribution, I have attempted to show how important has been the influence of the modern Glacial period, which I am fully convinced simultaneously affected the whole world, or at least great meridional belts. As showing how diversified are the means of occasional transport, I have discussed at some little length the means of dispersal of fresh-water productions.

If the difficulties be not insuperable in admitting that in the long course of time the individuals of the same species, and likewise of allied species, have proceeded from some one source; then I think all the grand leading facts of geographical distribution are explicable on the theory of migration (generally of the more dominant forms of life), together with subsequent modification and the multiplication of new forms. We can thus understand the high importance of barriers, whether of land or water, which separate our several zoological and botanical provinces. We can thus understand the localisation of sub-genera, genera, and families; and how it is that under different latitudes, for instance in South America, the inhabitants of the plains and mountains, of the forests, marshes, and deserts, are in so mysterious a manner linked together by affinity, and are likewise linked to the extinct beings which formerly inhabited the same continent. Bearing in mind that the mutual relations of organism to organism are of the highest importance, we can see why two areas having nearly the same physical conditions should often be inhabited by very different forms of life; for according to the length of time which has elapsed since new inhabitants entered one region; according to the nature of the communication which allowed certain forms and not others to enter, either in greater or lesser numbers; according or not, as those which entered happened to come in more or less direct competition with each other and with the aborigines; and according as the immigrants were capable of varying more or less rapidly, there would ensue in different regions, independently of their physical conditions, infinitely diversified conditions of life,--there would be an almost endless amount of organic action and reaction,--and we should find, as we do find, some groups of beings greatly, and some only slightly modified,--some developed in great force, some existing in scanty numbers--in the different great geographical provinces of the world.

On these same principles, we can understand, as I have endeavoured to show, why oceanic islands should have few inhabitants, but of these a great number should be endemic or peculiar; and why, in relation to the means of migration, one group of beings, even within the same class, should have all its species endemic, and another group should have all its species common to other quarters of the world. We can see why whole groups of organisms, as batrachians and terrestrial mammals, should be absent from oceanic islands, whilst the most isolated islands possess their own peculiar species of aerial mammals or bats. We can see why there should be some relation between the presence of mammals, in a more or less modified condition, and the depth of the sea between an island and the mainland. We can clearly see why all the inhabitants of an archipelago, though specifically distinct on the several islets, should be closely related to each other, and likewise be related, but less closely, to those of the nearest continent or other source whence immigrants were probably derived. We can see why in two areas, however distant from each other, there should be a correlation, in the presence of identical species, of varieties, of doubtful species, and of distinct but representative species.

As the late Edward Forbes often insisted, there is a striking parallelism in the laws of life throughout time and space: the laws governing the succession of forms in past times being nearly the same with those governing at the present time the differences in different areas. We see this in many facts. The endurance of each species and group of species is continuous in time; for the exceptions to the rule are so few, that they may fairly be attributed to our not having as yet discovered in an intermediate deposit the forms which are therein absent, but which occur above and below: so in space, it certainly is the general rule that the area inhabited by a single species, or by a group of species, is continuous; and the exceptions, which are not rare, may, as I have attempted to show, be accounted for by migration at some former period under different conditions or by occasional means of transport, and by the species having become extinct in the intermediate tracts. Both in time and space, species and groups of species have their points of maximum development. Groups of species, belonging either to a certain period of time, or to a certain area, are often characterised by trifling characters in common, as of sculpture or colour. In looking to the long succession of ages, as in now looking to distant provinces throughout the world, we find that some organisms differ little, whilst others belonging to a different class, or to a different order, or even only to a different family of the same order, differ greatly. In both time and space the lower members of each class generally change less than the higher; but there are in both cases marked exceptions to the rule. On my theory these several relations throughout time and space are intelligible; for whether we look to the forms of life which have changed during successive ages within the same quarter of the world, or to those which have changed after having migrated into distant quarters, in both cases the forms within each class have been connected by the same bond of ordinary generation; and the more nearly any two forms are related in blood, the nearer they will generally stand to each other in time and space; in both cases the laws of variation have been the same, and modifications have been accumulated by the same power of natural selection.

CHAPTER 13. MUTUAL AFFINITIES OF ORGANIC BEINGS: MORPHOLOGY: EMBRYOLOGY: RUDIMENTARY ORGANS.

CLASSIFICATION, groups subordinate to groups. Natural system. Rules and difficulties in classification, explained on the theory of descent with modification. Classification of varieties. Descent always used in classification. Analogical or adaptive characters. Affinities, general, complex and radiating. Extinction separates and defines groups. MORPHOLOGY, between members of the same class, between parts of the same individual. EMBRYOLOGY, laws of, explained by variations not supervening at an early age, and being inherited at a corresponding age. RUDIMENTARY ORGANS; their origin explained. Summary.

From the first dawn of life, all organic beings are found to resemble each other in descending degrees, so that they can be classed in groups under groups. This classification is evidently not arbitrary like the grouping of the stars in constellations. The existence of groups would have been of simple signification, if one group had been exclusively fitted to inhabit the land, and another the water; one to feed on flesh, another on vegetable matter, and so on; but the case is widely different in nature; for it is notorious how commonly members of even the same subgroup have different habits. In our second and fourth chapters, on Variation and on Natural Selection, I have attempted to show that it is the widely ranging, the much diffused and common, that is the dominant species belonging to the larger genera, which vary most. The varieties, or incipient species, thus produced ultimately become converted, as I believe, into new and distinct species; and these, on the principle of inheritance, tend to produce other new and dominant species. Consequently the groups which are now large, and which generally include many dominant species, tend to go on increasing indefinitely in size. I further attempted to show that from the varying descendants of each species trying to occupy as many and as different places as possible in the economy of nature, there is a constant tendency in their characters to diverge. This conclusion was supported by looking at the great diversity of the forms of life which, in any small area, come into the closest competition, and by looking to certain facts in naturalisation.

I attempted also to show that there is a constant tendency in the forms which are increasing in number and diverging in character, to supplant and exterminate the less divergent, the less improved, and preceding forms. I request the reader to turn to the diagram illustrating the action, as formerly explained, of these several principles; and he will see that the inevitable result is that the modified descendants proceeding from one progenitor become broken up into groups subordinate to groups. In the diagram each letter on the uppermost line may represent a genus including several species; and all the genera on this line form together one class, for all have descended from one ancient but unseen parent, and, consequently, have inherited something in common. But the three genera on the left hand have, on this same principle, much in common, and form a sub-family, distinct from that including the next two genera on the right hand, which diverged from a common parent at the fifth stage of descent. These five genera have also much, though less, in common; and they form a family distinct from that including the three genera still further to the right hand, which diverged at a still earlier period. And all these genera, descended from (A), form an order distinct from the genera descended from (I). So that we here have many species descended from a single progenitor grouped into genera; and the genera are included in, or subordinate to, sub-families, families, and orders, all united into one class. Thus, the grand fact in natural history of the subordination of group under group, which, from its familiarity, does not always sufficiently strike us, is in my judgment fully explained.

Naturalists try to arrange the species, genera, and families in each class, on what is called the Natural System. But what is meant by this system? Some authors look at it merely as a scheme for arranging together those living objects which are most alike, and for separating those which are most unlike; or as an artificial means for enunciating, as briefly as possible, general propositions,--that is, by one sentence to give the characters common, for instance, to all mammals, by another those common to all carnivora, by another those common to the dog-genus, and then by adding a single sentence, a full description is given of each kind of dog. The ingenuity and utility of this system are indisputable. But many naturalists think that something more is meant by the Natural System; they believe that it reveals the plan of the Creator; but unless it be specified whether order in time or space, or what else is meant by the plan of the Creator, it seems to me that nothing is thus added to our knowledge. Such expressions as that famous one of Linnaeus, and which we often meet with in a more or less concealed form, that the characters do not make the genus, but that the genus gives the characters, seem to imply that something more is included in our classification, than mere resemblance. I believe that something more is included; and that propinquity of descent,--the only known cause of the similarity of organic beings,--is the bond, hidden as it is by various degrees of modification, which is partially revealed to us by our classifications.

Let us now consider the rules followed in classification, and the difficulties which are encountered on the view that classification either gives some unknown plan of creation, or is simply a scheme for enunciating general propositions and of placing together the forms most like each other. It might have been thought (and was in ancient times thought) that those parts of the structure which determined the habits of life, and the general place of each being in the economy of nature, would be of very high importance in classification. Nothing can be more false. No one regards the external similarity of a mouse to a shrew, of a dugong to a whale, of a whale to a fish, as of any importance. These resemblances, though so intimately connected with the whole life of the being, are ranked as merely "adaptive or analogical characters;" but to the consideration of these resemblances we shall have to recur. It may even be given as a general rule, that the less any part of the organisation is concerned with special habits, the more important it becomes for classification. As an instance: Owen, in speaking of the dugong, says, "The generative organs being those which are most remotely related to the habits and food of an animal, I have always regarded as affording very clear indications of its true affinities. We are least likely in the modifications of these organs to mistake a merely adaptive for an essential character." So with plants, how remarkable it is that the organs of vegetation, on which their whole life depends, are of little signification, excepting in the first main divisions; whereas the organs of reproduction, with their product the seed, are of paramount importance!

We must not, therefore, in classifying, trust to resemblances in parts of the organisation, however important they may be for the welfare of the being in relation to the outer world. Perhaps from this cause it has partly arisen, that almost all naturalists lay the greatest stress on resemblances in organs of high vital or physiological importance. No doubt this view of the classificatory importance of organs which are important is generally, but by no means always, true. But their importance for classification, I believe, depends on their greater constancy throughout large groups of species; and this constancy depends on such organs having generally been subjected to less change in the adaptation of the species to their conditions of life. That the mere physiological importance of an organ does not determine its classificatory value, is almost shown by the one fact, that in allied groups, in which the same organ, as we have every reason to suppose, has nearly the same physiological value, its classificatory value is widely different. No naturalist can have worked at any group without being struck with this fact; and it has been most fully acknowledged in the writings of almost every author. It will suffice to quote the highest authority, Robert Brown, who in speaking of certain organs in the Proteaceae, says their generic importance, "like that of all their parts, not only in this but, as I apprehend, in every natural family, is very unequal, and in some cases seems to be entirely lost." Again in another work he says, the genera of the Connaraceae "differ in having one or more ovaria, in the existence or absence of albumen, in the imbricate or valvular aestivation. Any one of these characters singly is frequently of more than generic importance, though here even when all taken together they appear insufficient to separate Cnestis from Connarus." To give an example amongst insects, in one great division of the Hymenoptera, the antennae, as Westwood has remarked, are most constant in structure; in another division they differ much, and the differences are of quite subordinate value in classification; yet no one probably will say that the antennae in these two divisions of the same order are of unequal physiological importance. Any number of instances could be given of the varying importance for classification of the same important organ within the same group of beings.

Other books

For Every Evil by Ellen Hart
Entertaining Angels by Judy Duarte
Son of No One by Sherrilyn Kenyon