Read Seeing Further Online

Authors: Bill Bryson

Seeing Further (35 page)

BOOK: Seeing Further
2.32Mb size Format: txt, pdf, ePub
ads

Even paper itself is being reinvented, partly in plastic, for the information age. It is one of those fabrics that are hard to improve: its cheapness, durability, portability and readability (thanks to the high brightness contrast with ink, whether in bright or dim light) have secured the survival of the book and the newspaper in the digital age. But now the benefits of information technology are being combined with those of paper in a material commonly called e-paper or (to turn the idea on its head) e-ink: a plastic
sheet with the lightness and appearance of paper on which the ink can be rearranged electronically. A sheet of the stuff, connected to a microchip loaded with data, is an entire library. These heady possibilities should come with a warning, however, for Bacon was right to say that power stems from knowledge and not mere information.

Engineering Life

We have also means to make divers plants rise by mixtures of earths without seeds; and likewise to make divers new plants, differing from the vulgar; and to make one tree or plant turn into another. We have also parks and enclosures of all sorts of beasts and birds … By art likewise, we make them greater or taller than their kind is; and contrariwise dwarf them, and stay their growth: we make them more fruitful and bearing than their kind is; and contrariwise barren and not generative. Also we make them differ in colour, shape, activity, many ways … Neither do we this by chance, but we know beforehand, of what matter and commixture what kind of those creatures will arise.

Of all the ‘marvels’ in Bensalem, these are surely the most chilling, not least because of the apparent nonchalance with which the priests of Salomon’s House tamper with living nature. Here most of all Bacon’s treatise takes on a Faustian cast, and it is an easy matter to trace the path from
New Atlantis
to Mary Shelley, whose fantastic fable of life remade tapped into centuries of apprehension about the consequences of scientific hubris.

Of course, we cannot read Bacon’s comments now without thinking of biotechnology and genetic engineering, which permit the ‘commixture’ of creatures: spider genes in goats, plants loaded with the genetic defensive armoury of quite different (even animal) species. We can hollow out animal eggs and load them up with human genomes, and then grow them into embryos. And this is just the beginning. It is probably a
matter of a few years before new species are designed on the blackboard and manufactured with genomes synthesised in the laboratory, collections of genes handpicked more fastidiously than anything selective breeding can achieve. These genomes might be transferred into emptied cells, or simply allowed to override the existing genetic instruction manuals of ordinary bacteria. This ‘synthetic biology’ will represent a new origin of life, after a fashion: the first organisms outside the great chain of being that began almost four billion years ago. And tellingly, such efforts are now framed in terms that relate more to an information age than to the molecular biology of Crick and Watson: organisms, we are told, are being ‘reprogrammed’ with new ‘software’, and then ‘rebooted’ to get them running. The redesign of life ‘from scratch’ will be accompanied by well-motivated concerns about safety and ethics, but it will also confront us with deeper questions that we have previously preferred to keep at arm’s length: What is life? When does it begin? What is ‘natural’?

These questions that weigh so heavily for us now might have been regarded as far less burdensome within the uncompromisingly mechanistic worldview of Francis Bacon. Like his contemporaries René Descartes and Thomas Hobbes, he considered all phenomena, whether the workings of the human body or of the stars, to have rational, material causes. Everything was so many atoms, colliding in insensate profusion. Moreover, Bacon’s outlook (which accords with that of most scientists and engineers throughout the ages) is essentially optimistic, guided by a belief that the human lot can be improved by technical means. He was eager to free the sciences from religious shackles, to abandon the hierarchy of the Earth and heavens and a reliance on teleological explanations.

By and large, those aspirations still underpin efforts to engineer biology. Some of biotechnology’s earliest successes stemmed from an image of living cells, primarily bacteria, as microscopic factories for manufacturing sorely needed drugs. The development in the 1970s of recombinant DNA technology, which enabled genes to be sliced out of the genome of one
organism and spliced into that of another, using natural enzymes that conduct such cutting and pasting, enabled human insulin to be derived by fermentation of genetically modified
Escherichia coli
bacteria. Sights are now set not just on pharmaceuticals but on cleaner fuels, greener manufacturing of materials, biological clean-up of environmental contaminants, even ‘wet nano-robots’ that engage hand-to-hand with disease agents.

There was, as we can see, nothing new in the materialistic conception of life that enabled biotechnologists to view it as amenable to principles of construction and design. And indeed the reception of this ‘cut-and-paste’ approach to the living world was, all things considered, relatively muted: so long as it declines to re-engineer human beings (and perhaps other higher organisms), biotechnology tends to be seen as just another industrial process, more akin to brewing than to vivisection. While opponents of genetic modification have played on philosophically suspect notions of the ‘natural’ and ‘unnatural’, most of the resistance to its introduction has been motivated by concerns about commercial ownership and responsibility, and about public health: issues that might reasonably be raised (and often are) for any new technology. As far as the ‘sanctity of life’ is concerned, public opinion often shows a solipsistic parochialism. Yet if there is one lesson to be drawn from the controversy in Europe about genetically modified organisms (apart from a reminder of the unwelcome influence of mass media), it is that technologies are less likely to gain easy acceptance until they can demonstrate tangible benefits to potential consumers.

All the same, scientists have been revealingly eager to exploit public sympathy, or at least tolerance, towards ‘pure’ science in the promotion of biotechnological initiatives with decidedly applied goals. The Human Genome Project was in truth something of a mixture of both, to the extent that the distinction is meaningful at all; but the rhetoric with which the project advertised itself was concerned with uncovering the secrets – in the deeply misleading metaphor, ‘reading the book’ – of life. The project was
entirely dependent on technical advances, and it gave rise to no new theories but rather to an impressive and immensely useful (but only patchily understood) data bank. The frequent comparisons with the Moon landings were more apt than perhaps intended, since both were feats of technical prowess more than they were voyages into the scientific unknown.

Strikingly, then, the extension of engineering ideas to biology has so far been regarded with scarcely more distaste or disdain than is reserved for engineering more generally, and the complaints are often of much the same nature. Few even perceive the philosophical boldness of a word such as ‘bioengineering’, which is commonly accepted with the indifference one might expect to see accorded to a branch of automotive engineering. Perhaps we are more the heirs to Bacon’s vision than we realise. Even concerns about the prospect of the
de novo
creation of life are so far voiced only by rather minor pressure groups, and they too tend to focus on safety issues. Battle lines are only really drawn when biological technologies impinge on human life, as in the cases of stem-cell technology, embryo research and assisted conception. Only here have certain traditional belief systems deemed it necessary to impose assumptions about what life consists in.

Distorted, dogmatic, and dangerous though such assumptions may sometimes be, buried within them are some genuine questions about the ethical responsibilities of the engineer. Opinions may differ on the boundaries of human dignity, but it is surely right that these boundaries feature in any consideration of what we might and might not make. And the desirability of a technological goal is not to be determined simply by a health-and-safety or cost-benefit analysis, but by a careful consideration of the difficult question of whether it seems likely in the long term, on balance, to serve human welfare and well-being. The disturbing aspect of Bacon’s utopian scientific writings is often not so much what they consider possible, but how readily he assumes that humankind has the wisdom to handle such power.

W
HY
E
NGINEERING
M
ATTERS

As I write, the Large Hadron Collider, the world’s biggest atom-smasher at CERN in Geneva, has switched on with almost unprecedented media jamboree
*
. Asked about the practical value of it all, Stephen Hawking has said that ‘modern society is based on advances in pure science that were not foreseen to lead to practical applications’. It’s a common claim, and it subtly reinforces the hierarchy that Medawar identified: technology and engineering are the humble offspring of pure science, the casual cast-offs of a more elevated pursuit.

I don’t believe that such pronouncements are intended to denigrate applied science as an intellectual activity; they merely speak into a culture in which that has already happened. Pure science undoubtedly does lead to applied spin-offs, but this is not the norm. Rather, most of our technology has come from explicit and painstaking efforts to develop it. And this is simply a part of the scientific enterprise. A dividing line between pure and applied science makes no sense at all, running as it does in a convoluted path through disciplines, departments, even individual scientific papers and careers. Research aimed at applications fills the pages of the leading journals in physics, chemistry and the life and Earth sciences; curiosity-driven research with no real practical value is abundant in the ‘applied’ literature of the materials, biotechnological and engineering sciences. The fact that ‘pure’ and ‘applied’ science are useful and meaningful terms seduces us sometimes into thinking that they are real, absolute and distinct categories.

This isn’t merely a semantic issue. Concerns about a decline in university admissions for science and engineering are more or less universal among the various disciplines, but there is good reason to suspect that the sciences deemed to be more ‘pure’ retain a greater attraction for the brightest students among those who still gravitate in this direction – even though employment prospects for an engineer are better than for a string theorist (who in recent years has seemed likely to end up on Wall Street). In 1998 the President of the US National Academy of Engineering, William A.
Wulf, stated: ‘We need to understand why in a society so dependent on technology, a society that benefits so richly from the results of engineering, a society that rewards engineers so well, engineering isn’t perceived as a desirable profession.’ Yet many of the most pressing global problems – clean energy generation, the management of water resources, securing nuclear non-proliferation, creating less waste and more efficient use of material resources – cry out for technological expertise.

There’s no simple formula for the rehabilitation of the engineering, synthetic and technological (in the oldest sense) aspects of science. Celebrating their achievements is all very well, although it remains a conundrum why, for example, the British people seem to hold Isambard Kingdom Brunel in such high esteem without showing much inclination to follow in his footsteps. But no amount of flag-waving can disguise the fact that the practical sciences, the
craft sciences
if you will, have always had and will always have a double-edged nature: along with life-saving drugs, safer transportation, more accessible information and solar power comes pollution, landfills and nuclear weapons. The conventional talk of ‘dual-use’ technology should rather acknowledge the reality of a thousand uses, guided by as many agendas. As US writer Richard Powers puts it in his 1998 novel
Gain,
an exploration of the social politics of industrial chemistry, ‘People want everything. That’s their problem.’

Science does itself no favours when it tries to skip away from such complex issues with talk of ‘pure knowledge’, untainted by the marketplace. That’s a privileged position enjoyed by a very few of its practitioners, who even then cannot be sure that their seemingly arcane ideas won’t end up guiding the fabrication and operation of some device or other. Science is about making stuff, just as much as it is about understanding stuff. The two go hand in hand, and always have done. Francis Bacon implied as much; but in the twenty-first century, disciplines such as nanotechnology, quantum information technology and synthetic biology are blurring as never before the false distinctions between thinking and doing. So what shall we make tomorrow?

*
At the time of publication, the hiatus caused by the large Hadron Collider’s subsequent malfunction is almost at an end.

14 P
AUL
D
AVIES
J
UST
T
YPICAL:
O
UR
C
HANGING
P
LACE IN THE
U
NIVERSE

Paul Davies is a British-born theoretical physicist, cosmologist, astrobiologist and best-selling author. He is Director of the Beyond Center for Fundamental Concepts in Science and co-Director of the Cosmology Initiative, both at Arizona State University. He has written 28 books including
The Mind of God, About Time, How to Build a Time Machine, The Fifth Miracle
and
The Goldilocks Enigma.
His latest book,
The Eerie Silence,
is about the search for intelligent life in the universe.

T
HE DEVELOPMENT OF COSMOLOGY HAS CONFIRMED OVER AND OVER AGAIN THAT WE DO NOT OCCUPY A CENTRAL POSITION IN THE GREAT SCHEME OF THINGS. BUT AS PAUL DAVIES EXPLAINS, THE STORY OF OUR REALISATION THAT WE HOLD NO SPECIAL PLACE IN THE COSMOS COULD YET BE A TALE WITH A TWIST.

BOOK: Seeing Further
2.32Mb size Format: txt, pdf, ePub
ads

Other books

The Love Triangle (BWWM Romance) by Violet Jackson, Interracial Love
More Than Friends by Jessica Jayne
Clouds of Deceit by Joan Smith
The Saint Sees It Through by Leslie Charteris
The Art of Standing Still by Penny Culliford
Constellation Games by Leonard Richardson