The Elegant Universe (2 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
5.72Mb size Format: txt, pdf, ePub

Because these features of string theory require that we drastically change our understanding of space, time, and matter, they will take some time to get used to, to sink in at a comfortable level. But as shall become clear, when seen in its proper context, string theory emerges as a dramatic yet natural outgrowth of the revolutionary discoveries of physics during the past hundred years. In fact, we shall see that the conflict between general relativity and quantum mechanics is actually not the first, but the third in a sequence of pivotal conflicts encountered during the past century, each of whose resolution has resulted in a stunning revision of our understanding of the universe.

The Three Conflicts

The first conflict, recognized as far back as the late 1800s, concerns puzzling properties of the motion of light. Briefly put, according to Isaac Newton’s laws of motion, if you run fast enough you can catch up with a departing beam of light, whereas according to James Clerk Maxwell’s laws of electromagnetism, you can’t. As we will discuss in Chapter 2, Einstein resolved this conflict through his theory of special relativity, and in so doing completely overturned our understanding of space and time. According to special relativity, no longer can space and time be thought of as universal concepts set in stone, experienced identically by everyone. Rather, space and time emerged from Einstein’s reworking as malleable constructs whose form and appearance depend on one’s state of motion.

The development of special relativity immediately set the stage for the second conflict. One conclusion of Einstein’s work is that no object—in fact, no influence or disturbance of any sort—can travel faster than the speed of light. But, as we shall discuss in Chapter 3, Newton’s experimentally successful and intuitively pleasing universal theory of gravitation involves influences that are transmitted over vast distances of space instantaneously. It was Einstein, again, who stepped in and resolved the conflict by offering a new conception of gravity with his 1915 general theory of relativity. Just as special relativity overturned previous conceptions of space and time, so too did general relativity. Not only are space and time influenced by one’s state of motion, but they can warp and curve in response to the presence of matter or energy. Such distortions to the fabric of space and time, as we shall see, transmit the force of gravity from one place to another. Space and time, therefore, can no longer to be thought of as an inert backdrop on which the events of the universe play themselves out; rather, through special and then general relativity, they are intimate players in the events themselves.

Once again the pattern repeated itself: The discovery of general relativity, while resolving one conflict, led to another. Over the course of the three decades beginning in 1900, physicists developed quantum mechanics (discussed in Chapter 4) in response to a number of glaring problems that arose when nineteenth-century conceptions of physics were applied to the microscopic world. And as mentioned above, the third and deepest conflict arises from the incompatibility between quantum mechanics and general relativity. As we will see in Chapter 5, the gently curving geometrical form of space emerging from general relativity is at loggerheads with the frantic, roiling, microscopic behavior of the universe implied by quantum mechanics. As it was not until the mid-1980s that string theory offered a resolution, this conflict is rightly called the central problem of modern physics. Moreover, building on special and general relativity, string theory requires its own severe revamping of our conceptions of space and time. For example, most of us take for granted that our universe has three spatial dimensions. But this is not so according to string theory, which claims that our universe has many more dimensions than meet the eye—dimensions that are tightly curled into the folded fabric of the cosmos. So central are these remarkable insights into the nature of space and time that we shall use them as a guiding theme in all that follows. String theory, in a real sense, is the story of space and time since Einstein.

To appreciate what string theory actually is, we need to take a step back and briefly describe what we have learned during the last century about the microscopic structure of the universe.

The Universe at Its Smallest: What We Know about Matter

The ancient Greeks surmised that the stuff of the universe was made up of tiny “uncuttable” ingredients that they called atoms. Just as the enormous number of words in an alphabetic language is built up from the wealth of combinations of a small number of letters, they guessed that the vast range of material objects might also result from combinations of a small number of distinct, elementary building blocks. It was a prescient guess. More than 2,000 years later we still believe it to be true, although the identity of the most fundamental units has gone through numerous revisions. In the nineteenth century scientists showed that many familiar substances such as oxygen and carbon had a smallest recognizable constituent; following in the tradition laid down by the Greeks, they called them atoms. The name stuck, but history has shown it to be a misnomer, since atoms surely are “cuttable.” By the early 1930s the collective works of J. J. Thomson, Ernest Rutherford, Niels Bohr, and James Chadwick had established the solar systemÐlike atomic model with which most of us are familiar. Far from being the most elementary material constituent, atoms consist of a nucleus, containing protons and neutrons, that is surrounded by a swarm of orbiting electrons.

For a while many physicists thought that protons, neutrons, and electrons were the Greeks’ “atoms.” But in 1968 experimenters at the Stanford Linear Accelerator Center, making use of the increased capacity of technology to probe the microscopic depths of matter, found that protons and neutrons are not fundamental, either. Instead they showed that each consists of three smaller particles, called quarks—a whimsical name taken from a passage in James Joyce’s Finnegan’s Wake by the theoretical physicist Murray Gell-Mann, who previously had surmised their existence. The experimenters confirmed that quarks themselves come in two varieties, which were named, a bit less creatively, up and down. A proton consists of two up-quarks and a down-quark; a neutron consists of two down-quarks and an up-quark.

Everything you see in the terrestrial world and the heavens above appears to be made from combinations of electrons, up-quarks, and down-quarks. No experimental evidence indicates that any of these three particles is built up from something smaller. But a great deal of evidence indicates that the universe itself has additional particulate ingredients. In the mid-1950s, Frederick Reines and Clyde Cowan found conclusive experimental evidence for a fourth kind of fundamental particle called a neutrino—a particle whose existence was predicted in the early 1930s by Wolfgang Pauli. Neutrinos proved very difficult to find because they are ghostly particles that only rarely interact with other matter: an average-energy neutrino can easily pass right through many trillion miles of lead without the slightest effect on its motion. This should give you significant relief, because right now as you read this, billions of neutrinos ejected into space by the sun are passing through your body and the earth as well, as part of their lonely journey through the cosmos. In the late 1930s, another particle called a muon—identical to an electron except that a muon is about 200 times heavier—was discovered by physicists studying cosmic rays (showers of particles that bombard earth from outer space). Because there was nothing in the cosmic order, no unsolved puzzle, no tailor-made niche, that necessitated the muon’s existence, the Nobel PrizeÐwinning particle physicist Isidor Isaac Rabi greeted the discovery of the muon with a less than enthusiastic “Who ordered that?” Nevertheless, there it was. And more was to follow.

Using ever more powerful technology, physicists have continued to slam bits of matter together with ever increasing energy, momentarily recreating conditions unseen since the big bang. In the debris they have searched for new fundamental ingredients to add to the growing list of particles. Here is what they have found: four more quarks—charm, strange, bottom, and top—and another even heavier cousin of the electron, called a tau, as well as two other particles with properties similar to the neutrino (called the muon-neutrino and tau-neutrino to distinguish them from the original neutrino, now called the electron-neutrino). These particles are produced through high-energy collisions and exist only ephemerally; they are not constituents of anything we typically encounter. But even this is not quite the end of the story. Each of these particles has an antiparticle partner—a particle of identical mass but opposite in certain other respects such as its electric charge (as well as its charges with respect to other forces discussed below). For instance, the antiparticle of an electron is called a positron—it has exactly the same mass as an electron, but its electric charge is +1 whereas the electric charge of the electron is -1. When in contact, matter and antimatter can annihilate one another to produce pure energy—that’s why there is extremely little naturally occurring antimatter in the world around us.

Physicists have recognized a pattern among these particles, displayed in Table 1.1. The matter particles neatly fall into three groups, which are often called families. Each family contains two of the quarks, an electron or one of its cousins, and one of the neutrino species. The corresponding particle types across the three families have identical properties except for their mass, which grows larger in each successive family. The upshot is that physicists have now probed the structure of matter to scales of about a billionth of a billionth of a meter and shown that everything encountered to date—whether it occurs naturally or is produced artificially with giant atom-smashers—consists of some combination of particles from these three families and their antimatter partners.

A glance at Table 1.1 will no doubt leave you with an even stronger sense of Rabi’s bewilderment at the discovery of the muon. The arrangement into families at least gives some semblance of order, but innumerable “whys” leap to the fore. Why are there so many fundamental particles, especially when it seems that the great majority of things in the world around us need only electrons, up-quarks, and down-quarks? Why are there three families? Why not one family or four families or any other number? Why do the particles have a seemingly random spread of masses—why, for instance, does the tau weigh about 3,520 times as much as an electron? Why does the top quark weigh about 40,200 times as much an up-quark? These are such strange, seemingly random numbers. Did they occur by chance, by some divine choice, or is there a comprehensible scientific explanation for these fundamental features of our universe?

The Forces, or, Where’s the Photon?

Things only become more complicated when we consider the forces of nature. The world around us is replete with means of exerting influence: balls can be hit with bats, bungee enthusiasts can throw themselves earthward from high platforms, magnets can keep superfast trains suspended just above metallic tracks, Geiger counters can tick in response to radioactive material, nuclear bombs can explode. We can influence objects by vigorously pushing, pulling, or shaking them; by hurling or firing other objects into them; by stretching, twisting, or crushing them; or by freezing, heating, or burning them. During the past hundred years physicists have accumulated mounting evidence that all of these interactions between various objects and materials, as well as any of the millions upon millions of others encountered daily, can be reduced to combinations of four fundamental forces. One of these is the gravitational force. The other three are the electromagnetic force, the weak force, and the strong force.

Gravity is the most familiar of the forces, being responsible for keeping us in orbit around the sun as well as for keeping our feet firmly planted on earth. The mass of an object measures how much gravitational force it can exert as well as feel. The electromagnetic force is the next most familiar of the four. It is the force driving all of the conveniences of modern life—lights, computers, TVs, telephones—and underlies the awesome might of lightning storms and the gentle touch of a human hand. Microscopically, the electric charge of a particle plays the same role for the electromagnetic force as mass does for gravity: it determines how strongly the particle can exert as well as respond electromagnetically.

The strong and the weak forces are less familiar because their strength rapidly diminishes over all but subatomic distance scales; they are the nuclear forces. This is why these two forces were discovered only much more recently. The strong force is responsible for keeping quarks “glued” together inside of protons and neutrons and keeping protons and neutrons tightly crammed together inside atomic nuclei. The weak force is best known as the force responsible for the radioactive decay of substances such as uranium and cobalt.

During the past century, physicists have found two features common to all these forces. First, as we will discuss in Chapter 5, at a microscopic level all the forces have an associated particle that you can think of as being the smallest packet or bundle of the force. If you fire a laser beam—an “electromagnetic ray gun”—you are firing a stream of photons, the smallest bundles of the electromagnetic force. Similarly, the smallest constituents of weak and strong force fields are particles called weak gauge bosons and gluons. (The name gluon is particularly descriptive: You can think of gluons as the microscopic ingredient in the strong glue holding atomic nuclei together.) By 1984 experimenters had definitively established the existence and the detailed properties of these three kinds of force particles, recorded in Table 1.2. Physicists believe that the gravitational force also has an associated particle—the graviton—but its existence has yet to be confirmed experimentally.

The second common feature of the forces is that just as mass determines how gravity affects a particle, and electric charge determines how the electromagnetic force affects it, particles are endowed with certain amounts of “strong charge” and “weak charge” that determine how they are affected by the strong and weak forces. (These properties are detailed in the table in the endnotes to this chapter.1) But as with particle masses, beyond the fact that experimental physicists have carefully measured these properties, no one has any explanation of why our universe is composed of these particular particles, with these particular masses and force charges.

Other books

Barbara Metzger by A Debt to Delia
Chasing Thunder by Ginger Voight
Mine's to Kill by Capri Montgomery
Angel Of The City by Leahy, R.J.
Velocity by Dean Koontz
His Captive Mortal by Renee Rose
Frail by Joan Frances Turner
Blind Spot by B. A. Shapiro