The Selfish Gene (31 page)

Read The Selfish Gene Online

Authors: Richard Dawkins

BOOK: The Selfish Gene
13.6Mb size Format: txt, pdf, ePub

 

Axelrod translated all 15 strategies into one common programming language, and set them against one another in one big computer. Each strategy was paired off in turn with every other one (including a copy of itself) to play Iterated Prisoner's Dilemma. Since there were 15 strategies, there were 15 x 15, or 225 separate games going on in the computer. When each pairing had gone through 200 moves of the game, the winnings were totalled up and the winner declared.

 

We are not concerned with which strategy won against any particular opponent. What matters is which strategy accumulated the most 'money', summed over all its 15 pairings. 'Money' means simply 'points', awarded according to the following scheme: mutual Cooperation, 3 points; Temptation to defect, 5 points; Punishment for mutual defection, 1 point (equivalent to a light fine in our earlier game); Sucker's payoff, 0 points (equivalent to a heavy fine in our earlier game).

 

 

Figure C. Axelrod's computer tournament: payoffs to me from various outcomes

 

The maximum possible score that any strategy could achieve was 15,000 (200 rounds at 5 points per round, for each of 15 opponents). The minimum possible score was 0. Needless to say, neither of these two extremes was realized. The most that a strategy can realistically hope to win in an average one of its 15 pairings cannot be much more than 600 points. This is what two players would each receive if they both consistently cooperated, scoring 3 points for each of the 200 rounds of the game. If one of them succumbed to the temptation to defect, it would very probably end up with fewer points than 600 because of retaliation by the other player (most of the submitted strategies had some kind of retaliatory behaviour built into them). We can use 600 as a kind of benchmark for a game, and express all scores as a percentage of this benchmark. On this scale it is theoretically possible to score up to 166 per cent (1000 points), but in practice no strategy's average score exceeded 600.

 

Remember that the 'players' in the tournament were not humans but computer programs, preprogrammed strategies. Their human authors played the same role as genes programming bodies (think of Chapter 4's computer chess and the Andromeda computer). You can think of the strategies as miniature 'proxies' for their authors. Indeed, one author could have submitted more than one strategy {although it would have been cheating-and Axelrod would presumably not have allowed it-for an author to 'pack' the competition with strategies, one of which received the benefits of sacrificial cooperation from the others).

 

Some ingenious strategies were submitted, though they were, of course, far less ingenious than their authors. The winning strategy, remarkably, was the simplest and superficially least ingenious of all. It was called Tit for Tat, and was submitted by Professor Anatol
Rapoport, a well-known psychologist and games theorist from Toronto
. Tit for Tat begins by cooperating on the first move and thereafter simply copies the previous move of the other player.

 

How might a game involving Tit for Tat proceed? As ever, what happens depends upon the other player. Suppose, first, that the other player is also Tit for Tat (remember that each strategy played against copies of itself as well as against the other 14). Both Tit for Tats begin by cooperating. In the next move, each player copies the other's previous move, which was cooperate. Both continue to cooperate until the end of the game, and both end up with the full 100 per cent 'benchmark' score of 600 points.

 

Now suppose Tit for Tat plays against a strategy called Naive Prober. Naive Prober wasn't actually entered in Axelrod's competition, but it is instructive nevertheless. It is basically identical to Tit for Tat except that, once in a while, say on a random one in ten moves, it throws in a gratuitous defection and claims the high Temptation score. Until Naive Prober tries one of its probing defections the players might as well be two Tit for Tats. A long and mutually profitable sequence of cooperation seems set to run its course, with a comfortable 100 per cent benchmark score for both players. But suddenly, without warning, say on the eighth move, Naive Prober defects. Tit for Tat, of course, has played cooperate on this move, and so is landed with the Sucker's payoff of 0 points.

 

Naive Prober appears to have done well, since it has obtained 5 points from that move. But in the next move Tit for Tat 'retaliates'. It plays defect, simply following its rule of imitating the opponent's previous move. Naive Prober meanwhile, blindly following its own built-in copying rule, has copied its opponent's cooperate move. So it now collects the Sucker's payoff of 0 points, while Tit for Tat gets the high score of 5. In the next move, Naive Prober-rather unjustly one might think-'retaliates' against Tit for Tat's defection. And so the alternation continues. During these alternating runs both players receive on average 2.5 points per move (the average of 5 and 0). This is lower than the steady 3 points per move that both players can amass in a run of mutual cooperation. So, when Naive Prober plays against Tit for Tat, both do worse than when Tit for Tat plays against another Tit for Tat. And when Naive Prober plays against another Naive Prober, both tend to do, if anything, even worse still, since runs of reverberating defection tend to get started earlier.

 

Now consider another strategy, called Remorseful Prober. Remorseful Prober is like Naive Prober, except that it takes active steps to break out of runs of alternating recrimination. To do this it needs a slightly longer 'memory' than either Tit for Tat or Naive Prober. Remorseful Prober remembers whether it has just spontaneously defected, and whether the result was prompt retaliation. If so, it 'remorsefully' allows its opponent 'one free hit' without retaliating. This means that runs of mutual recrimination are nipped in the bud. If you now work through an imaginary game between Remorseful Prober and Tit for Tat, you'll find that runs of would-be mutual retaliation are promptly scotched. Most of the game is spent in mutual cooperation, with both players enjoying the consequent generous score. Remorseful Prober does better against Tit for Tat than Naive Prober does, though not as well as Tit for Tat does against itself.

 

Some of the strategies entered in Axelrod's tournament were much more sophisticated than either Remorseful Prober or Naive Prober, but they too ended up with fewer points, on average, than simple Tit for Tat. Indeed the least successful of all the strategies (except Random) was the most elaborate. It was submitted by 'Name withheld'-a spur to pleasing speculation: Some eminence grise in the Pentagon? The head of the CIA? Henry Kissinger? Axelrod himself? I suppose we shall never know.

 

It isn't all that interesting to examine the details of the particular strategies that were submitted. This isn't a book about the ingenuity of computer programmers. It is more interesting to classify strategies according to certain categories, and examine the success of these broader divisions. The most important category that Axelrod recognizes is 'nice'. A nice strategy is defined as one that is never the first to defect Tit for Tat is an example. It is capable of defecting, but it does so only in retaliation. Both Naive Prober and Remorseful Prober are nasty strategies because they sometimes defect, however rarely, when not provoked. Of the 15 strategies entered in the tournament, 8 were nice. Significantly, the 8 top-scoring strategies were the very same 8 nice strategies, the 7 nasties trailing well behind. Tit for Tat obtained an average of 5045 points: 84 per cent of our benchmark of 600, and a good score. The other nice strategies scored only slightly less, with scores ranging from 83.4 per cent down to 786 per cent. There is a big gap between this score and the 66.8 per cent obtained by Graaskamp, the most successful of all the nasty strategies. It seems pretty convincing that nice guys do well in this game.

 

Another of Axelrod's technical terms is 'forgiving'. A forgiving strategy is one that, although it may retaliate, has a short memory. It is swift to overlook old misdeeds. Tit for Tat is a forgiving strategy. It raps a defector over the knuckles instantly but, after that, lets bygones be bygones. Chapter 10's Grudger is totally unforgiving. Its memory lasts the entire game. It never forgets a grudge against a player who has ever defected against it, even once. A strategy formally identical to Grudger was entered in Axelrod's tournament under the name of Friedman, and it didn't do particularly well. Of all the nice strategies (note that it is technically nice, although it is totally unforgiving), Grudger/Friedman did next to worst. The reason unforgiving strategies don't do very well is that they can't break out of runs of mutual recrimination, even when their opponent is 'remorseful'.

 

It is possible to be even more forgiving than Tit for Tat. Tit for Two Tats allows its opponents two defections in a row before it eventually retaliates. This might seem excessively saintly and magnanimous. Nevertheless Axelrod worked out that, if only somebody had submitted Tit for Two Tats, it would have won the tournament. This is because it is so good at avoiding runs of mutual recrimination.

 

So, we have identified two characteristics of winning strategies: niceness and forgivingness. This almost utopian-sounding conclusion-that niceness and forgivingness pay-came as a surprise to many of the experts, who had tried to be too cunning by submitting subtly nasty strategies; while even those who had submitted nice strategies had not dared anything so forgiving as Tit for Two Tats.

 

Axelrod announced a second tournament. He received 62 entries and again added Random, making 63 in all. This time, the exact number of moves per game was not fixed at 200 but was left open, for a good reason that I shall come to later. We can still express scores as a percentage of the 'benchmark', or 'always cooperate' score, even though that benchmark needs more complicated calculation and is no longer a fixed 600 points.

 

Programmers in the second tournament had all been provided with the results of the first, including Axelrod's analysis of why Tit for Tat and other nice and forgiving strategies had done so well. It was only to be expected that the contestants would take note of this background information, in one way or another. In fact, they split into two schools of thought. Some reasoned that niceness and forgivingness were evidently winning qualities, and they accordingly submitted nice, forgiving strategies. John Maynard Smith went so far as to submit the super-forgiving Tit for Two Tats. The other school of thought reasoned that lots of their colleagues, having read Axelrod's analysis, would now submit nice, forgiving strategies. They therefore submitted nasty strategies, trying to exploit these anticipated softies!

 

But once again nastiness didn't pay. Once again, Tit for Tat, submitted by Anatol
Rapoport, was the winner, and it scored a massive 96 per cent of the benchmark score. And again nice strategies, in general, did better than nasty ones. All but one of the top 15 strategies were nice, and all but one of the bottom 15 were nasty. But although the saintly Tit for Two Tats would have won the first tournament if it had been submitted, it did not win the second. This was because the field now included more subtle nasty strategies capable of preying ruthlessly upon such an out-and-out softy.

 

This underlines an important point about these tournaments. Success for a strategy depends upon which other strategies happen to be submitted. This is the only way to account for the difference between the second tournament, in which Tit for Two Tats was ranked well down the list, and the first tournament, which Tit for Two Tats would have won. But, as I said before, this is not a book about the ingenuity of computer programmers. Is there an objective way in which we can judge which is the truly best strategy, in a more general and less arbitrary sense? Readers of earlier chapters will already be prepared to find the answer in the theory of evolutionarily stable strategies.

 

I was one of those to whom Axelrod circulated his early results, with an invitation to submit a strategy for the second tournament. I didn't do so, but I did make another suggestion. Axelrod had already begun to think in ESS terms, but I felt that this tendency was so important that I wrote to him suggesting that he should get in touch with W. D. Hamilton, who was then, though Axelrod didn't know it, in a different department of the same university, the University of Michigan. He did indeed immediately contact Hamilton, and the result of their subsequent collaboration was a brilliant joint paper published in the journal Science in 1981, a paper that won the Newcomb Cleveland Prize of the American Association for the Advancement of Science. In addition to discussing some delightfully way-out biological examples of iterated prisoner's dilemmas, Axelrod and Hamilton gave what I regard as due recognition to the ESS approach.

 

Contrast the ESS approach with the 'round-robin' system that Axelrod's two tournaments followed. A round-robin is like a football league. Each strategy was matched against each other strategy an equal number of times. The final score of a strategy was the sum of the points it gained against all the other strategies. To be successful in a round-robin tournament, therefore, a strategy has to be a good competitor against all the other strategies that people happen to have submitted. Axelrod's name for a strategy that is good against a wide variety of other strategies is 'robust'. Tit for Tat turned out to be a robust strategy. But the set of strategies that people happen to have submitted is an arbitrary set. This was the point that worried us above. It just so happened that in Axelrod's original tournament about half the entries were nice. Tit for Tat won in this climate, and Tit for Two Tats would have won in this climate if it had been submitted. But suppose that nearly all the entries had just happened to be nasty. This could very easily have occurred. After all, 6 out of the 14 strategies submitted were nasty. If 13 of them had been nasty, Tit for Tat wouldn't have won. The 'climate' would have been wrong for it. Not only the money won, but the rank order of success among strategies, depends upon which strategies happen to have been submitted; depends, in other words, upon something as arbitrary as human whim. How can we reduce this arbitrariness? By 'thinking ESS'.

Other books

Noelle's Christmas Crush by Angela Darling
Ex-Kop by Hammond, Warren
Shaman by Maya Kaathryn Bohnhoff
Heroes by Ray Robertson
Wrath of a Mad God by Raymond E. Feist
Article 23 by William R. Forstchen