Einstein (4 page)

Read Einstein Online

Authors: Walter Isaacson

BOOK: Einstein
13.54Mb size Format: txt, pdf, ePub

A decade after that, in 1915, he wrested from nature his crowning glory, one of the most beautiful theories in all of science, the general theory of relativity. As with the special theory, his thinking had evolved through thought experiments. Imagine being in an enclosed elevator accelerating up through space, he conjectured in one of them. The effects you’d feel would be indistinguishable from the experience of gravity.

Gravity, he figured, was a warping of space and time, and he came up with the equations that describe how the dynamics of this curvature
result from the interplay between matter, motion, and energy. It can be described by using another thought experiment. Picture what it would be like to roll a bowling ball onto the two-dimensional surface of a trampoline. Then roll some billiard balls. They move toward the bowling ball not because it exerts some mysterious attraction but because of the way it curves the trampoline fabric. Now imagine this happening in the four-dimensional fabric of space and time. Okay, it’s not easy, but that’s why we’re no Einstein and he was.

The exact midpoint of his career came a decade after that, in 1925, and it was a turning point. The quantum revolution he had helped to launch was being transformed into a new mechanics that was based on uncertainties and probabilities. He made his last great contributions to quantum mechanics that year but, simultaneously, began to resist it. He would spend the next three decades, ending with some equations scribbled while on his deathbed in 1955, stubbornly criticizing what he regarded as the incompleteness of quantum mechanics while attempting to subsume it into a unified field theory.

Both during his thirty years as a revolutionary and his subsequent thirty years as a resister, Einstein remained consistent in his willingness to be a serenely amused loner who was comfortable not conforming. Independent in his thinking, he was driven by an imagination that broke from the confines of conventional wisdom. He was that odd breed, a reverential rebel, and he was guided by a faith, which he wore lightly and with a twinkle in his eye, in a God who would not play dice by allowing things to happen by chance.

Einstein’s nonconformist streak was evident in his personality and politics as well. Although he subscribed to socialist ideals, he was too much of an individualist to be comfortable with excessive state control or centralized authority. His impudent instincts, which served him so well as a young scientist, made him allergic to nationalism, militarism, and anything that smacked of a herd mentality. And until Hitler caused him to revise his geopolitical equations, he was an instinctive pacifist who celebrated resistance to war.

His tale encompasses the vast sweep of modern science, from the infinitesimal to the infinite, from the emission of photons to the expansion of the cosmos. A century after his great triumphs, we are still
living in Einstein’s universe, one defined on the macro scale by his theory of relativity and on the micro scale by a quantum mechanics that has proven durable even as it remains disconcerting.

His fingerprints are all over today’s technologies. Photoelectric cells and lasers, nuclear power and fiber optics, space travel, and even semiconductors all trace back to his theories. He signed the letter to Franklin Roosevelt warning that it may be possible to build an atom bomb, and the letters of his famed equation relating energy to mass hover in our minds when we picture the resulting mushroom cloud.

Einstein’s launch into fame, which occurred when measurements made during a 1919 eclipse confirmed his prediction of how much gravity bends light, coincided with, and contributed to, the birth of a new celebrity age. He became a scientific supernova and humanist icon, one of the most famous faces on the planet. The public earnestly puzzled over his theories, elevated him into a cult of genius, and canonized him as a secular saint.

If he did not have that electrified halo of hair and those piercing eyes, would he still have become science’s preeminent poster boy? Suppose, as a thought experiment, that he had looked like a Max Planck or a Niels Bohr. Would he have remained in their reputational orbit, that of a mere scientific genius? Or would he still have made the leap into the pantheon inhabited by Aristotle, Galileo, and Newton?
2

The latter, I believe, is the case. His work had a very personal character, a stamp that made it recognizably his, the way a Picasso is recognizably a Picasso. He made imaginative leaps and discerned great principles through thought experiments rather than by methodical inductions based on experimental data. The theories that resulted were at times astonishing, mysterious, and counterintuitive, yet they contained notions that could capture the popular imagination: the relativity of space and time,
E=mc
2
, the bending of light beams, and the warping of space.

Adding to his aura was his simple humanity. His inner security was tempered by the humility that comes from being awed by nature. He could be detached and aloof from those close to him, but toward mankind in general he exuded a true kindness and gentle compassion.

Yet for all of his popular appeal and surface accessibility, Einstein
also came to symbolize the perception that modern physics was something that ordinary laymen could not comprehend, “the province of priest-like experts,” in the words of Harvard professor Dudley Herschbach.
3
It was not always thus. Galileo and Newton were both great geniuses, but their mechanical cause-and-effect explanation of the world was something that most thoughtful folks could grasp. In the eighteenth century of Benjamin Franklin and the nineteenth century of Thomas Edison, an educated person could feel some familiarity with science and even dabble in it as an amateur.

A popular feel for scientific endeavors should, if possible, be restored given the needs of the twenty-first century. This does not mean that every literature major should take a watered-down physics course or that a corporate lawyer should stay abreast of quantum mechanics. Rather, it means that an appreciation for the methods of science is a useful asset for a responsible citizenry. What science teaches us, very significantly, is the correlation between factual evidence and general theories, something well illustrated in Einstein’s life.

In addition, an appreciation for the glories of science is a joyful trait for a good society. It helps us remain in touch with that childlike capacity for wonder, about such ordinary things as falling apples and elevators, that characterizes Einstein and other great theoretical physicists.
4

That is why studying Einstein can be worthwhile. Science is inspiring and noble, and its pursuit an enchanting mission, as the sagas of its heroes remind us. Near the end of his life, Einstein was asked by the New York State Education Department what schools should emphasize. “In teaching history,” he replied, “there should be extensive discussion of personalities who benefited mankind through independence of character and judgment.”
5
Einstein fits into that category.

At a time when there is a new emphasis, in the face of global competition, on science and math education, we should also note the other part of Einstein’s answer. “Critical comments by students should be taken in a friendly spirit,” he said. “Accumulation of material should not stifle the student’s independence.” A society’s competitive advantage will come not from how well its schools teach the multiplication
and periodic tables, but from how well they stimulate imagination and creativity.

Therein lies the key, I think, to Einstein’s brilliance and the lessons of his life. As a young student he never did well with rote learning. And later, as a theorist, his success came not from the brute strength of his mental processing power but from his imagination and creativity. He could construct complex equations, but more important, he knew that math is the language nature uses to describe her wonders. So he could visualize how equations were reflected in realities—how the electromagnetic field equations discovered by James Clerk Maxwell, for example, would manifest themselves to a boy riding alongside a light beam. As he once declared, “Imagination is more important than knowledge.”
6

That approach required him to embrace nonconformity. “Long live impudence!” he exulted to the lover who would later become his wife. “It is my guardian angel in this world.” Many years later, when others thought that his reluctance to embrace quantum mechanics showed that he had lost his edge, he lamented, “To punish me for my contempt for authority, fate made me an authority myself.”
7

His success came from questioning conventional wisdom, challenging authority, and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals. Tyranny repulsed him, and he saw tolerance not simply as a sweet virtue but as a necessary condition for a creative society. “It is important to foster individuality,” he said, “for only the individual can produce the new ideas.”
8

This outlook made Einstein a rebel with a reverence for the harmony of nature, one who had just the right blend of imagination and wisdom to transform our understanding of the universe. These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the twentieth century, when Einstein helped usher in the modern age.

CHAPTER TWO
CHILDHOOD
1879–1896
 

 

Maja, age 3, and Albert Einstein, 5

 
The Swabian
 

He was slow in learning how to talk. “My parents were so worried,” he later recalled, “that they consulted a doctor.” Even after he had begun using words, sometime after the age of 2, he developed a quirk that prompted the family maid to dub him “der Depperte,” the dopey one, and others in his family to label him as “almost backwards.” Whenever he had something to say, he would try it out on himself, whispering it softly until it sounded good enough to pronounce aloud. “Every sentence he uttered,” his worshipful younger sister recalled, “no matter how routine, he repeated to himself softly, moving his lips.” It was all very worrying, she said. “He had such difficulty with language that those around him feared he would never learn.”
1

His slow development was combined with a cheeky rebelliousness
toward authority, which led one schoolmaster to send him packing and another to amuse history by declaring that he would never amount to much. These traits made Albert Einstein the patron saint of distracted school kids everywhere.
2
But they also helped to make him, or so he later surmised, the most creative scientific genius of modern times.

His cocky contempt for authority led him to question received wisdom in ways that well-trained acolytes in the academy never contemplated. And as for his slow verbal development, he came to believe that it allowed him to observe with wonder the everyday phenomena that others took for granted. “When I ask myself how it happened that I in particular discovered the relativity theory, it seemed to lie in the following circumstance,” Einstein once explained. “The ordinary adult never bothers his head about the problems of space and time. These are things he has thought of as a child. But I developed so slowly that I began to wonder about space and time only when I was already grown up. Consequently, I probed more deeply into the problem than an ordinary child would have.”
3

Einstein’s developmental problems have probably been exaggerated, perhaps even by himself, for we have some letters from his adoring grandparents saying that he was just as clever and endearing as every grandchild is. But throughout his life, Einstein had a mild form of echolalia, causing him to repeat phrases to himself, two or three times, especially if they amused him. And he generally preferred to think in pictures, most notably in famous thought experiments, such as imagining watching lightning strikes from a moving train or experiencing gravity while inside a falling elevator. “I very rarely think in words at all,” he later told a psychologist. “A thought comes, and I may try to express it in words afterwards.”
4

Einstein was descended, on both parents’ sides, from Jewish trades-men and peddlers who had, for at least two centuries, made modest livings in the rural villages of Swabia in southwestern Germany. With each generation they had become, or at least so they thought, increasingly assimilated into the German culture that they loved. Although Jewish by cultural designation and kindred instinct, they displayed scant interest in the religion or its rituals.

Einstein regularly dismissed the role that his heritage played in
shaping who he became. “Exploration of my ancestors,” he told a friend late in life, “leads nowhere.”
5
That’s not fully true. He was blessed by being born into an independent-minded and intelligent family line that valued education, and his life was certainly affected, in ways both beautiful and tragic, by membership in a religious heritage that had a distinctive intellectual tradition and a history of being both outsiders and wanderers. Of course, the fact that he happened to be Jewish in Germany in the early twentieth century made him more of an outsider, and more of a wanderer, than he would have preferred—but that, too, became integral to who he was and the role he would play in world history.

Other books

Voice Out of Darkness by Ursula Curtiss
Rottweiler Rescue by O'Connell, Ellen
Stop the Presses! by Rachel Wise
The Infiltrators by Daniel Lawlis
Death by Proposal by Skye, Jaden
Desire Me More by Tiffany Clare