Read Power, Sex, Suicide: Mitochondria and the Meaning of Life Online
Authors: Nick Lane
Tags: #Science, #General
Brown, G. C. Mitochondria and cell death.
The Biochemist
27(3)
: 15–18; 2005.
Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssière, J. L., Petit P. X., and Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible
step of programmed lymphocyte death in vivo.
Journal of Experimental Medicine
181:
1661–1672; 1995.
—— —— —— Decaudin, D., Macho, A., Hirsch, T., Susin, S. A., Petit, P. X., Mignotte, B., and Kroemer, G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death.
Journal of Experimental Medicine
182:
367–377; 1995.
Cytochrome c release—— Susin, S. A., Marchetti, P., Hirsch, T., Gómez-Monterret, I., Castedo, M., and Kroemer, G. Mitochondrial control of nuclear apoptosis.
Journal of Experimental Medicine
183:
1533–1544; 1996.
Balk, J., and Leaver, C. J. The PET-1–CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release.
The Plant Cell
13:
1803–1818; 2001.
Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis.
Science
275:
1132–1136; 1997.
Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c.
Cell
86:
147–157; 1996.
Ott, M., Robertson, J. D., Gogvadze, V., Zhitotovsky, B., and Orrenius, S. Cytochrome c release from mitochondria proceeds by a two-step process.
Proceedings of the National Academy of Sciences USA
99:
1259–1263; 2002.
Other mitochondrial apoptotic proteinsYang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked.
Science
275:
1129–1132; 1997.
Candé, C., Cecconi, F., Dessen, P., and Kroemer, G. Apoptosis-inducing factor (AIF) pathway: Key to the conserved caspase-independent pathways of cell death?
Journal of Cell Science
115:
4727–4734; 2002.
Bcl-2 familyvan Gurp, M., Festjens, N., van Loo, G., Saelens, X., and Vandenabeele, P. Mitochondrial intermembrane proteins in cell death.
Biochemical and Biophysical Research Communications
304:
487–497; 2003.
Adams, J. M., and Cory, S. Life-or-death decisions by the Bcl-2 protein family.
Trends in Biochemical Sciences
26:
61–66; 2001.
Orrenius, S. Mitochondrial regulation of apoptotic cell death.
Toxicology Letters
149:
19–23; 2004.
Link between intrinsic and extrinsic pathways of apoptosisZamzami, N., and Kroemer, G. Apoptosis: Mitochondrial membrane permeabilization—the (w)hole story?
Current Biology
13:
R71–R73; 2003.
Bacterial origin of apoptotic genesSprick, M. R., and Walczak, H. The interplay between the Bcl-2 family and death receptor-mediated apoptosis.
Biochemica et Biophysica Acta
1644:
125–132; 2004.
Ameisen, J. C. On the origin, evolution, and nature of programmed cell death: A timeline of four billion years.
Cell Death and Differentiation
9:
367–393; 2002.
Host-symbiont relationships in the evolution of apoptosisKoonin, E. V., and Aravind, L. Origin and evolution of eukaryotic apoptosis: The bacterial connection.
Cell Death and Differentiation
9:
394–404; 2002.
Blackstone, N. W., and Green, D. R. The evolution of a mechanism of cell suicide.
Bioessays
21:
84–88; 1999.
—— Kirkwood, T. B. L. Mitochondria and programmed cell death: ‘Slave revolt’ or community homeostasis? In P. Hammerstein (ed.),
Genetic and Cultural Evolution of Cooperation.
MIT Press, Cambridge MA, USA 2003.
Frade, J. M., and Michaelidis, T. M. Origin of eukaryotic programmed cell death: A consequence of aerobic metabolism?
Bioessays
19:
827–832; 1997.
Müller, A., Günther, D., Düx, F., Naumann, M., Meyer T. F., and Rudel, T. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases.
EMBO (European Molecular Biology Organization) Journal
18:
339–352; 1999.
Free radicals and recombinationNaumann, M., Rudel, T., and Meyer, T. Host cell interactions and signalling with
Neisseria gonorrhoeae
.
Current Opinion in Microbiology
2:
62–70; 1999.
Brennan, R. J., and Schiestl, R. H. Chloroform and carbon tetrachloride induce intrachromosomal recombination and oxidative free radicals in
Saccharomyces cerevisiae
.
Mutation Research
397:
271–278; 1998.
Filkowski, J., Yeoman, A., Kovalchuk, O., and Kovalchuk, I. Systemic plant signal triggers genome instability.
Plant Journal
38:
1–11; 2004.
Sex and the origin of deathNedelcu, A. M., Marcu, O., and Michod, R. E. Sex as a response to oxidative stress: A twofold increase in cellular reactive oxygen species activates sex genes.
Proceedings of the Royal Society of London B: Biological Sciences
271:
1591–1592; 2004.
Blackstone, N. W., and Green, D. R. The evolution of a mechanism of cell suicide.
Bioessays
21:
84–88; 1999.
Part 6—— —— Redox control and the evolution of multicellularity.
Bioessays
22:
947–953; 2000.
Ridley, Mark.
Mendel’s Demon: Gene Justice and the Complexity of Life
. Phoenix, London, UK, 2001.
Evolution of the sexesSykes, Bryan.
The Seven Daughters of Eve
. Corgi, London, UK, 2001.
Charlesworth, B. The evolution of chromosomal sex determination.
Novartis Foundation Symposium
244:
207–224; 2002.
Uniparental inheritanceWhitfield, J. Everything you always wanted to know about sexes.
PLoS (Public Library of Science) Biology
2:
0718–0721; 2004.
Birky, C. W., Jr. Uniparental inheritance of mitochondrial and chloroplast genes: Mechanisms and evolution.
Proceedings of the National Academy of Sciences USA
92:
11331–11338; 1995.
Selfish conflictHoekstra, R. E. Evolutionary origin and consequences of uniparental mitochondrial inheritance.
Human Reproduction
15
(suppl. 2): 102–111; 2000.
Cosmides, L. M., and Tooby, J. Cytoplasmic inheritance and intragenomic conflict.
Journal of Theoretical Biology
89:
83–129; 1981.
Hurst, L., and Hamilton, W. D. Cytoplasmic fusion and the nature of sexes.
Proceedings of the Royal Society of London B: Biological Sciences
247:
189–194; 1992.
Male sterility in plantsPartridge, L., and Hurst, L. D. Sex and conflict.
Science
281:
2003–2008; 1998.
Budar, F., Touzet, P., and de Paepe, R. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited.
Genetica
117:
3–16; 2003.
DrosophilaSabar, M., Gagliardi, D., Balk, J., and Leaver, C. J. ORFB is a subunit of F1F(O)-ATP synthase: Insight into the basis of cytoplasmic male sterility in sunflower.
EMBO (European Molecular Biology Organization) Reports
4:
381–386; 2003.
Heteroplasmy in angiospermsPitnick, S., and Karr, T. L. Paternal products and by-products in Drosophila development.
Proceedings of the Royal Society of London B: Biological Sciences
265:
821–826; 1998.
Ooplasmic transferZhang, Q., Liu, Y., and Sodmergen. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species.
Plant Cell Physiology
44:
941–951; 2003.
Barritt, J. A., Brenner, C. A., Malter, H. E., and Cohen, J. Mitochondria in human offspring derived from ooplasmic transplantation.
Human Reproduction
16:
513–516; 2001.
Mitochondrial DNA and human evolutionSt John, J. C. Ooplasm donation in humans: The need to investigate the transmission of mitochondrial DNA following cytoplasmic transfer.
Human Reproduction
17:
1954–1958; 2002.
Ankel-Simons, F., and Cummins, J. M. Misconceptions about mitochondria and mammalian fertilisation: Implications for theories on human evolution.
Proceedings of the National Academy of Sciences USA
93:
13859–13863; 1996.
Cann, R. L., Stoneking, M., and Wilson, A. C. Mitochondrial DNA and human evolution.
Nature
325:
31–36; 1987.
Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., and Pääbo, S.
Mitochondrial recombinationNeanderthal DNA sequences and the origin of modern humans.
Cell
90:
19–30; 1997.
Eyre-Walker, A., Smith, N. H., and Smith, J. M. How clonal are human mitochondria?
Proceedings of the Royal Society of London B
266:
477–483; 1999.
Hagelberg, E. Recombination or mutation rate heterogeneity? Implications for Mitochondrial Eve.
Trends in Genetics
19:
84–90; 2003.
Calibrating the mitochondrial clockKraytsberg, Y., Schwartz, M., Brown, T. A., Ebralidse, K., Kunz, W. S., Clayton, D. A., Vissing, J., and Khrapko, K. Recombination of human mitochondrial DNA.
Science
304:
981; 2004.
Gibbons, A. Calibrating the mitochondrial clock.
Science
279:
28–29; 1998.
Lake Mungo fossilCummins, J. Mitochondria DNA and the Y chromosome: Parallels and paradoxes.
Reproduction, Fertility and Development
13:
533–542; 2001.
Adcock, G. J., Dennis, E. S., Easteal, S., Huttley, G. A., Jermiin, L. S., Peacock, W. J., and Thorne, A. Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins.
Proceedings of the National Academy of Sciences USA
98:
537–542; 2001.
Mitochondrial selectionBowler, J. M., Johnston, H., Olley, J. M., Prescott, J. R., Roberts, R. G., Shawcross, W., and Spooner, N. A. New ages for human occupation and climatic change at Lake Mungo, Australia.
Nature
421:
837–840; 2003.
Coskun, P. E., Ruiz-Pesini, E., and Wallace, D. C. Control region mtDNA variants: Longevity, climatic adaptation, and a forensic conundrum.
Proceedings of the National Academy of Sciences USA
100:
2174–2176; 2003.
—— Beal, M. F., and Wallace, D. C. Alzheimer’s brains harbor somatic mtDNA controlregion mutations that suppress mitochondrial transcription and replication.
Proceedings of the National Academy of Sciences USA
101:
10726–10731; 2004.
Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., and Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA.
Science
303:
223–226; 2004.