Read The Beginning of Infinity: Explanations That Transform the World Online
Authors: David Deutsch
Ideas have consequences, and the ‘who should rule?’ approach to political philosophy is not just a mistake of academic analysis: it has been part of practically every bad political doctrine in history. If the political process is seen as an engine for putting the right rulers in
power, then it justifies violence, for until that right system is in place, no ruler is legitimate; and once it is in place, and its designated rulers are ruling, opposition to them is opposition to rightness. The problem then becomes how to thwart anyone who is working against the rulers or their policies. By the same logic, everyone who thinks that existing rulers or policies are bad must infer that the ‘who should rule?’ question has been answered wrongly, and therefore that the power of the rulers is not legitimate, and that opposing it is legitimate, by force if necessary. Thus the very question ‘Who should rule?’ begs for violent, authoritarian answers, and has often received them. It leads those in power into tyranny, and to the entrenchment of bad rulers and bad policies; it leads their opponents to violent destructiveness and revolution.
Advocates of violence usually have in mind that none of those things need happen if only everyone agreed on who should rule. But that means agreeing about what is right, and, given agreement on that, rulers would then have nothing to do. And, in any case, such agreement is neither possible nor desirable: people are different, and have unique ideas; problems are inevitable, and progress consists of solving them.
Popper therefore applies his basic ‘how can we detect and eliminate errors?’ to political philosophy in the form
how can we rid ourselves of bad governments without violence?
Just as science seeks explanations that are experimentally testable, so a rational political system makes it as easy as possible to detect, and persuade others, that a leader or policy is bad, and to remove them without violence if they are. Just as the institutions of science are structured so as to avoid entrenching theories, but instead to expose them to criticism and testing, so political institutions should not make it hard to oppose rulers and policies, non-violently, and should embody traditions of peaceful, critical discussion of them and of the institutions themselves and everything else. Thus, systems of government are to be judged not for their prophetic ability to choose and install good leaders and policies, but for their ability to remove bad ones that are already there.
That entire stance is fallibilism in action. It
assumes
that rulers and policies are always going to be flawed – that problems are inevitable. But it also assumes that improving upon them is possible: problems are soluble. The ideal towards which this is working is not that nothing
unexpected will go wrong, but that when it does it will be an opportunity for further progress.
Why would anyone want to make the leaders and policies that they themselves favour more vulnerable to removal? Indeed, let me first ask:
why would anyone want to replace bad leaders and policies at all?
That question may seem absurd, but perhaps it is absurd only from the perspective of a civilization that takes progress for granted. If we did not expect progress, why should we expect the new leader or policy, chosen by whatever method, to be any better than the old? On the contrary, we should then expect any changes on average to do as much harm as good. And then the precautionary principle advises, ‘Better the devil you know than the devil you don’t.’ There is a closed loop of ideas here: on the assumption that knowledge is not going to grow, the precautionary principle is true; and on the assumption that the precautionary principle is true, we cannot afford to allow knowledge to grow. Unless a society is expecting its own future choices to be better than its present ones, it will strive to make its present policies and institutions as immutable as possible. Therefore Popper’s criterion can be met only by societies that expect their knowledge to grow – and to grow unpredictably. And, further, they are expecting that if it did grow,
that would help
.
This expectation is what I call optimism, and I can state it, in its most general form, thus:
The Principle of Optimism
All evils are caused by insufficient knowledge.
Optimism is, in the first instance, a way of explaining failure, not prophesying success. It says that there is no fundamental barrier, no law of nature or supernatural decree, preventing progress. Whenever we try to improve things and fail, it is not because the spiteful (or unfathomably benevolent) gods are thwarting us or punishing us for trying, or because we have reached a limit on the capacity of reason to make improvements, or because it is best that we fail, but always because we did not know enough, in time. But optimism is also a stance towards the future, because nearly all failures, and nearly all successes, are yet to come.
Optimism follows from the explicability of the physical world, as I explained in
Chapter 3
. If something is permitted by the laws of physics, then the only thing that can prevent it from being technologically possible is not knowing how. Optimism also assumes that none of the
prohibitions
imposed by the laws of physics are necessarily
evils
. So, for instance, the lack of the impossible knowledge of prophecy is not an insuperable obstacle to progress. Nor are insoluble mathematical problems, as I explained in
Chapter 8
.
That means that in the long run there are no insuperable evils, and in the short run the only insuperable evils are parochial ones. There can be no such thing as a disease for which it is impossible to discover a cure, other than certain types of brain damage – those that have dissipated the knowledge that constitutes the patient’s personality. For a sick person is a physical object, and the task of transforming this object into the same person in good health is one that no law of physics rules out. Hence there is a way of achieving such a transformation – that is to say, a cure. It is only a matter of knowing how. If we do not, for the moment, know how to eliminate a particular evil, or we know in theory but do not yet have enough time or resources (i.e. wealth), then, even so, it is universally true that
either
the laws of physics forbid eliminating it in a given time with the available resources
or
there is a way of eliminating it in the time and with those resources.
The same must hold, equally trivially, for the evil of death – that is to say, the deaths of human beings from disease or old age. This problem has a tremendous resonance in every culture – in its literature, its values, its objectives great and small. It also has an almost unmatched reputation for insolubility (except among believers in the supernatural): it is taken to be the epitome of an insuperable obstacle. But there is no rational basis for that reputation. It is absurdly parochial to read some deep significance into this particular failure, among so many, of the biosphere to support human life – or of medical science throughout the ages to cure ageing. The problem of ageing is of the same general type as that of disease. Although it is a complex problem by present-day standards, the complexity is finite and confined to a relatively narrow arena whose basic principles are already fairly well understood. Meanwhile, knowledge in the relevant fields is increasing exponentially.
Sometimes ‘immortality’ (in this sense) is even regarded as undesirable. For instance, there are arguments from overpopulation; but those are examples of the Malthusian prophetic fallacy: what each additional surviving person would need to survive at present-day standards of living is easily calculated; what knowledge that person would contribute to the solution of the resulting problems is unknowable. There are also arguments about the stultification of society caused by the entrenchment of old people in positions of power; but the traditions of criticism in our society are already well adapted to solving that sort of problem. Even today, it is common in Western countries for powerful politicians or business executives to be removed from office while still in good health.
There is a traditional optimistic story that runs as follows. Our hero is a prisoner who has been sentenced to death by a tyrannical king, but gains a reprieve by promising to teach the king’s favourite horse to talk within a year. That night, a fellow prisoner asks what possessed him to make such a bargain. He replies, ‘A lot can happen in a year. The horse might die. The king might die. I might die. Or the horse might talk!’ The prisoner understands that, while his immediate problems have to do with prison bars and the king and his horse, ultimately the evil he faces is caused by insufficient knowledge. That makes him an optimist. He knows that, if progress is to be made, some of the opportunities and some of the discoveries will be inconceivable in advance. Progress cannot take place at all unless someone is open to, and prepares for, those inconceivable possibilities. The prisoner may or may not discover a way of teaching the horse to talk. But he may discover something else. He may persuade the king to repeal the law that he had broken; he may learn a convincing conjuring trick in which the horse would seem to talk; he may escape; he may think of an achievable task that would please the king even more than making the horse talk. The list is infinite. Even if every such possibility is unlikely, it takes only one of them to be realized for the whole problem to be solved. But if our prisoner is going to escape by creating a new idea, he cannot possibly know that idea today, and therefore he cannot let the assumption that it will never exist condition his planning.
Optimism implies all the other necessary conditions for knowledge to grow, and for knowledge-creating civilizations to last, and hence
for the beginning of infinity. We have, as Popper put it, a duty to be optimistic – in general, and about civilization in particular. One can argue that saving civilization will be difficult. That does not mean that there is a low probability of solving the associated problems. When we say that a mathematical problem is hard to solve, we do not mean that it is
unlikely
to be solved. All sorts of factors determine whether mathematicians even address a problem, and with what effort. If an easy problem is not deemed to be interesting or useful, they might leave it unsolved indefinitely, while hard problems are solved all the time.
Usually the hardness of a problem is one of the very factors that cause it to be solved. Thus President John F. Kennedy said in 1962, in a celebrated example of an optimistic approach to the unknown, ‘We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard.’ Kennedy did not mean that the moon project, being hard, was unlikely to succeed. On the contrary, he believed that it would. What he meant by a hard task was one that depends on facing the unknown. And the intuitive fact to which he was appealing was that although such hardness is always a negative factor when choosing among
means
to pursue an objective, when choosing the objective itself it can be a positive one, because we want to engage with projects that will involve creating new knowledge. And an optimist expects the creation of knowledge to constitute progress – including its unforeseeable consequences.
Thus, Kennedy remarked that the moon project would require a vehicle ‘made of new metal alloys, some of which have not yet been invented, capable of standing heat and stresses several times more than have ever been experienced, fitted together with a precision better than the finest watch, carrying all the equipment needed for propulsion, guidance, control, communications, food and survival’. Those were the known problems, which would require as-yet-unknown knowledge. That this was ‘on an untried mission, to an unknown celestial body’ referred to the unknown problems that made the probabilities, and the outcomes, profoundly unknowable. Yet none of that prevented rational people from forming the expectation that the mission could succeed. This expectation was not a judgement of probability: until far into the project, no one could predict that, because it depended on solutions
not yet discovered to problems not yet known. When people were being persuaded to work on the project – and to vote for it, and so on – they were being persuaded that our being confined to one planet was an evil, that exploring the universe was a good, that the Earth’s gravitational field was not a barrier but merely a problem, and that overcoming it and all the other problems involved in the project was only a matter of knowing how, and that the nature of the problems made that moment the right one to try to solve them. Probabilities and prophecies were not needed in that argument.
Pessimism has been endemic in almost every society throughout history. It has taken the form of the precautionary principle, and of ‘who should rule?’ political philosophies and all sorts of other demands for prophecy, and of despair in the power of creativity, and of the misinterpretation of problems as insuperable barriers. Yet there have always been a few individuals who see obstacles as problems, and see problems as soluble. And so, very occasionally, there have been places and moments when there was, briefly, an end to pessimism. As far as I know, no historian has investigated the history of optimism, but my guess is that whenever it has emerged in a civilization there has been a mini-enlightenment: a tradition of criticism resulting in an efflorescence of many of the patterns of human progress with which we are familiar, such as art, literature, philosophy, science, technology and the institutions of an open society. The end of pessimism is potentially a beginning of infinity. Yet I also guess that in every case – with the single, tremendous exception (so far) of our own Enlightenment – this process was soon brought to an end and the reign of pessimism was restored.
The best-known mini-enlightenment was the intellectual and political tradition of criticism in ancient Greece which culminated in the so-called ‘Golden Age’ of the city-state of Athens in the fifth century
BCE
. Athens was one of the first democracies, and was home to an astonishing number of people who are regarded to this day as major figures in the history of ideas, such as the philosophers Socrates, Plato and Aristotle, the playwrights Aeschylus, Aristophanes, Euripides and Sophocles, and the historians Herodotus, Thucydides and Xenophon. The Athenian philosophical tradition continued a tradition of criticism dating back to Thales of Miletus over a century earlier and which had included Xenophanes of Colophon (570–480
BCE
), one of the first to
question anthropocentric theories of the gods. Athens grew wealthy through trade, attracted creative people from all over the known world, became one of the foremost military powers of the age, and built a structure, the Parthenon, which is to this day regarded as one of the great architectural achievements of all time. At the height of the Golden Age, the Athenian leader Pericles tried to explain what made Athens successful. Though he no doubt believed that the city’s patron goddess, Athena, was on their side, he evidently did not consider ‘the goddess did it’ to be a sufficient explanation for the Athenians’ success. Instead, he listed specific attributes of Athenian civilization. We do not know exactly how much of what he described was flattery or wishful thinking, but, in assessing the optimism of a civilization, what that civilization aspired to be must be even more important than what it had yet succeeded in becoming.