Read The Cerebellum: Brain for an Implicit Self Online
Authors: Masao Ito
Tags: #Science, #Life Sciences, #Medical, #Biology, #Neurology, #Neuroscience
Yano R, Nakazawa K, Kado RT, Karachot L, Ito M, Mikawa S, Komine Y, Yamamori T (1996) Cerebellar long-term plasticity and gene expression. In: Ito M, Miyashita Y, editors. Integrative and molecular approach to brain function. Amsterdam: Elsevier. pp. 35–44.
Yeo CH, Hardiman MJ, Glickstein M (1985a) Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res 60:87–98.
Yeo CH, Hardiman MJ, Glickstein M (1985b) Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp Brain Res 60:99–113.
Yeo CH, Hardiman MJ, Glickstein M (1985c) Classical conditioning of the nictitating membrane response of the rabbit. IIl. Connections of cerebellar lobule HVI. Exp Brain Res 60:114–126.
Yttri E, Smith A, Reid E, Thach, WT (2006) Inactivation of parvocellular red nucleus impairs prism adaptation to and learning of contralateral gaze-reach shift. (Abstr.) 440.15/K8 Society for Neuroscience Annual Meeting, Atlanta.
Yuzaki M, Furuichi T, Mikoshiba K, Kagawa Y (1994) A stimulus paradigm inducing long-term desensitization of AMPA receptors evokes a specific increase in BDNF mRNA in cerebellar slices. Learn Mem 1:230–242.
Zagon IS, McLaughlin PI, Smith S (1977) Neural populations in the human cerebellum: estimations from isolated cell nuclei. Brain Res 127:279–282.
Zee DS, Tusa RJ, Herdman SJ, Butler PH, Gucer G (1987) Effects of occipital lobectomy upon eye movements in primate. J Neurophysiol 58:883–907.
Zhang J, Li B, Yu L, He Y-C, Li H-Z, Zhu J-N, Wang J-J (2011) A role for orexin in central vestibular motor control. Neuron 69:793–804.
Zhang W, Linden DJ (2006) Long-term depression at the mossy fiber–deep cerebellar nucleus synapse. J Neurosci 26:6935–6944.
Zhang W, Shin JH, Linden DJ (2004) Persistent changes in the intrinsic excitability of rat deep cerebellar nuclear neurons induced by EPSP or IPSP bursts. J Physiol (London) 561:703–719.
Zhao Y, Baker H, Walaas SI, Sudol M (1991) Localization of p62 protein in mammalian neural tissues. Oncogene 6:1725–1733.
Zhu J-N, Yung W-H, Chow BK-C, Chan Y-S, Wang J-J (2006) The cerebellar-hypothalamic circuits: Potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52:93-106.
action controllers, premotor cortex
,
181-182
action recognition, mirror neurons
,
189
action schema
,
183-184
cognitive functions,
193-194
activity in the cerebellum
,
198-201
cerebellar internal model for thoughts
,
196
cerebral cortical model for thoughts
,
195-196
explicit/implicit thoughts
,
197-198
mental disorders associated with cerebellar dysfunction
,
201-203
neural systems
,
193-195
eye-blink conditioning,
132-136
locomotion,
130-132
models
ocular reflexes
,
139-145
prototypes
,
146-149
saccadic eye movement
,
146-147
somatic reflexes
,
147-148
nociceptive withdrawal reflex,
127-128
OKR (Optokinetic Eye-Movement Response),
114
saccades,
119-120
sympathetic reflexes,
136-138
VOR (Vestibuloocular Reflex)
climbing fiber input
,
110-111
eye movement-related signals
,
111-112
flocculus
,
107-109
memory sites
,
112
vestibular mossy fiber input
,
110
adaptive filter model
cerebellum,
95
Fujita,
34-35
afferent fibers
,
44-45
afferent muscles
,
121
Albus
, James,
33
alpha-amino-3-hydroxy-5-methyl-4-isoxazolone propionate
.
See
AMPA
alpha-motoneurons
,
121
AMPA receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolone propionate)
,
45
conjunctive LTD,
74-75
mediation of mossy fiber-granule cell synapses,
45
mediation of parallel fiber input to Golgi cells,
54
archicerebellum
,
23
arm movements, voluntary motor control
,
151-154
autism
,
201
autonomic reflexes
.
See
cardiovascular function
B-zone Purkinje cells
, locomotion,
131
BDNF (brain-derived neurotrophic factor)
,
80
beaded fibers
cells of origin,
66
input/output pathways of cerebellar cortex,
50
Bergmann glial cells
,
57-58
beta-motoneurons
,
121
blocking studies, eye-blink conditioning
,
133
body schema
,
183-184
brain divisions
,
2
brain-derived neurotrophic factor (BDNF)
,
80
c-Fos/Jun-B
,
79
C-type microcomplex, adaptive control
,
146-149
C3 zone
,
104
Ca
2+
surge (Purkinje cell dendrites)
,
71-74
Ca
2+
/calmodulin-dependent protein kinase (CaMKII)
,
78
calretinin-expressed unipolar brush cells
,
47
CaMKII (Ca
2+
/calmodulin-dependent protein kinase)
,
78
canal specific pathways, VOR (Vestibuloocular Reflex)
,
105
cannabinoid-receptor-mediated presynaptic LTD
,
82
cardiovascular function
somatosympathetic reflex,
137
vestibulosympathetic reflex,
136-137
caudate neurons, disinhibition of basal ganglia components
,
210
cells
Bergmann glial,
57-58
globular (cerebellar cortex granular layer),
56-57
Golgi,
53-55
granule,
45-46
Lugaro,
55-56
NG
2+
,
58-59
origin
beaded fibers
,
66
mossy fibers
,
60-63
Purkinje
B-zone
,
131
Ca
2+
surge in dendrites
,
71-74
convergence of climbing and parallel fibers
,
32
inhibitory neurons
,
30
input/output pathways of cerebellar cortex
,
47-49
models for neuronal circuits
,
92-94
synapses with parallel fibers
,
70
synaptic plasticity
,
81-83
unipolar brush,
46-47
central nervous system (CNS)
components,
2
neural networks,
8-9
neuronal circuits
decomposition and reconstruction
,
1-7
neurons and synapses
,
7-8
systems control mechanisms,
9
cognitive functions
,
19-20
feedback control systems
,
10
intelligence and conscious awareness
,
20-21
model-based control systems
,
10-11
reflexes
,
12-18
central pattern generator (CPG) mechanism
,
15
cerebellar control
OFR (Ocular Following Response)
,
116
OKR (Optokinetic Eye-Movement Response)
,
113-115
saccades
,
117-120
VOR (Vestibuloocular Reflex)
,
105-113
voluntary eye movement,
159
DMFC (dorsomedial frontal cortex)
,
165-166
frontal eye field
,
159-165