The Elegant Universe (27 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
6.92Mb size Format: txt, pdf, ePub

One suggestion for resolving this problem might be that although there are five different superstring theories, four might be ruled out simply by experiment, leaving one true and relevant explanatory framework. But even if this were the case, we would still be left with the nagging question of why the other theories exist in the first place. In the wry words of Witten, “If one of the five theories describes our universe, who lives in the other four worlds?”7 A physicist’s dream is that the search for the ultimate answers will lead to a single, unique, absolutely inevitable conclusion. Ideally, the final theory—whether string theory or something else—should be the way it is because there simply is no other possibility. If we were to discover that there is only one logically sound theory incorporating the basic ingredients of relativity and quantum mechanics, many feel that we would have reached the deepest understanding of why the universe has the properties it does. In short, this would be unified-theory paradise.8

As we will see in Chapter 12, recent research has taken superstring theory one giant step closer to this unified utopia by showing that the five different theories are, remarkably, actually five different ways of describing one and the same overarching theory. Superstring theory has the uniqueness pedigree.

Things seem to be falling into place, but, as we will discuss in the next chapter, unification through string theory does require one more significant departure from conventional wisdom.

The Elegant Universe
Chapter 8

More Dimensions Than Meet the Eye

E

instein resolved two of the major scientific conflicts of the past hundred years through special and then general relativity. Although the initial problems that motivated his work did not portend the outcome, each of these resolutions completely transformed our understanding of space and time. String theory resolves the third major scientific conflict of the past century and, in a manner that even Einstein would likely have found remarkable, it requires that we subject our conceptions of space and time to yet another radical revision. String theory so thoroughly shakes the foundations of modern physics that even the generally accepted number of dimensions in our universe—something so basic that you might think it beyond questioning—is dramatically and convincingly overthrown.

The Illusion of the Familiar

Experience informs intuition. But it does more than that: Experience sets the frame within which we analyze and interpret what we perceive. You would no doubt expect, for instance, that the “wild child” raised by a pack of wolves would interpret the world from a perspective that differs substantially from your own. Even less extreme comparisons, such as those between people raised in very different cultural traditions, serve to underscore the degree to which our experiences determine our interpretive mindset.

Yet there are certain things that we all experience. And it is often the beliefs and expectations that follow from these universal experiences that can be the hardest to identify and the most difficult to challenge. A simple but profound example is the following. If you were to get up from reading this book, you could move in three independent directions—that is, through three independent, spatial dimensions. Absolutely any path you follow—regardless of how complicated—results from some combination of motion through what we might call the “left-right dimension,” the “back-forth dimension,” and the “up-down dimension.” Every time you take a step you implicitly make three separate choices that determine how you move through these three dimensions.

An equivalent statement, as encountered in our discussion of special relativity, is that any location in the universe can be fully specified by giving three pieces of data: where it is relative to these three spatial dimensions. In familiar language, you can specify a city address, say, by giving a street (location in the “left-right dimension”), a cross street or an avenue (location in the “back-forth dimension”), and a floor number (location in the “up-down dimension”). And from a more modern perspective, we have seen that Einstein’s work encourages us to think about time as another dimension (the “future-past dimension”), giving us a total of four dimensions (three space dimensions and one time dimension). You specify events in the universe by telling where and when they occur.

This feature of the universe is so basic, so consistent, and so thoroughly pervasive that it really does seem beyond questioning. In 1919, however, a little-known Polish mathematician named Theodor Kaluza from the University of Königsberg had the temerity to challenge the obvious—he suggested that the universe might not actually have three spatial dimensions; it might have more. Sometimes silly-sounding suggestions are plain silly. Sometimes they rock the foundations of physics. Although it took quite some time to percolate, Kaluza’s suggestion has revolutionized our formulation of physical law. We are still feeling the aftershocks of his astonishingly prescient insight.

Kaluza’s Idea and Klein’s Refinement

The suggestion that our universe might have more than three spatial dimensions may well sound fatuous, bizarre, or mystical. In reality, though, it is concrete and thoroughly plausible. To see this, it’s easiest to shift our sights temporarily from the whole universe and think about a more familiar object, such as a long, thin garden hose.

Imagine that a few hundred feet of garden hose is stretched across a canyon, and you view it from, say, a quarter of a mile away, as in Figure 8.1(a). From this distance, you will easily perceive the long, unfurled, horizontal extent of the hose, but unless you have uncanny eyesight, the thickness of the hose will be difficult to discern. From your distant vantage point, you would think that if an ant were constrained to live on the hose, it would have only one dimension in which to walk: the left-right dimension along the hose’s length. If someone asked you to specify where the ant was at a given moment, you would need to give only one piece of data: the distance of the ant from the left (or the right) end of the hose. The upshot is that from a quarter of a mile away, a long piece of garden hose appears to be a one-dimensional object.

In reality, we know that the hose does have thickness. You might have trouble resolving this from a quarter mile, but by using a pair of binoculars you can zoom in on the hose and observe its girth directly, as shown in Figure 8.1(b). From this magnified perspective, you see that a little ant living on the hose actually has two independent directions in which it can walk: along the left-right dimension spanning the length of the hose as already identified, and along the “clockwise-counterclockwise dimension” around the circular part of the hose. You now realize that to specify where the tiny ant is at any given instant, you must actually give two pieces of data: where the ant is along the length of the hose, and where the ant is along its circular girth. This reflects the fact the surface of the garden hose is two-dimensional.1

Nonetheless, there is a clear difference between these two dimensions. The direction along the length of the hose is long, extended, and easily visible. The direction circling around the thickness of the hose is short, “curled up,” and harder to see. To become aware of the circular dimension, you have to examine the hose with significantly greater precision.

This example underscores a subtle and important feature of spatial dimensions: they come in two varieties. They can be large, extended, and therefore directly manifest, or they can be small, curled up, and much more difficult to detect. Of course, in this example you did not have to exert a great deal of effort to reveal the “curled-up” dimension encircling the thickness of the hose. You merely had to use a pair of binoculars. However, if you had a very thin garden hose—as thin as a hair or a capillary—detecting its curled-up dimension would be more difficult.

In a paper he sent to Einstein in 1919, Kaluza made an astounding suggestion. He proposed that the spatial fabric of the universe might possess more than the three dimensions of common experience. The motivation for this radical thesis, as we will discuss shortly, was Kaluza’s realization that it provided an elegant and compelling framework for weaving together Einstein’s general relativity and Maxwell’s electromagnetic theory into a single, unified conceptual framework. But, more immediately, how can this proposal be squared with the apparent fact that we see precisely three spatial dimensions?

The answer, implicit in Kaluza’s work and subsequently made explicit and refined by the Swedish mathematician Oskar Klein in 1926, is that the spatial fabric of our universe may have both extended and curled-up dimensions. That is, just like the horizontal extent of the garden hose, our universe has dimensions that are large, extended, and easily visible—the three spatial dimensions of common experience. But like the circular girth of a garden hose, the universe may also have additional spatial dimensions that are tightly curled up into a tiny space—a space so tiny that it has so far eluded detection by even our most refined experimental equipment.

To gain a clearer image of this remarkable proposal, let’s reconsider the garden hose for a moment. Imagine that the hose is painted with closely spaced black circles along its girth. From far away, as before, the garden hose looks like a thin, one-dimensional line. But if you zoom in with binoculars, you can detect the curled-up dimension, even more easily after our paint job, and you see the image illustrated in Figure 8.2. This figure emphasizes that the surface of the garden hose is two-dimensional, with one large, extended dimension and one small, circular dimension. Kaluza and Klein proposed that our spatial universe is similar, but that it has three large, extended spatial dimensions and one small, circular dimension—for a total of four spatial dimensions. It is difficult to draw something with that many dimensions, so for visualization purposes we must settle for an illustration incorporating two large dimensions and one small, circular dimension. We illustrate this in Figure 8.3, in which we magnify the fabric of space in much the same way that we zoomed in on the surface of the garden hose.

The lowest image in the figure shows the apparent structure of space—the ordinary world around us—on familiar distance scales such as meters. These distances are represented by the largest set of grid lines. In the subsequent images, we zoom in on the fabric of space by focusing our attention on ever smaller regions, which we sequentially magnify in order to make them easily visible. At first as we examine the fabric of space on shorter distance scales, not much happens; it appears to retain the same basic form as it has on larger scales, as we see in the first three levels of magnification. However, as we continue on our journey toward the most microscopic examination of space—the fourth level of magnification in Figure 8.3—a new, curled-up, circular dimension becomes apparent, much like the circular loops of thread making up the pile of a tightly woven piece of carpet. Kaluza and Klein suggested that the extra circular dimension exists at every point in the extended dimensions, just as the circular girth of the garden hose exists at every point along its unfurled, horizontal extent. (For visual clarity, we have drawn only an illustrative sample of the circular dimension at regularly spaced points in the extended dimensions.) We show a close-up of the Kaluza-Klein vision of the microscopic structure of the spatial fabric in Figure 8.4.

The similarity with the garden hose is manifest, although there are some important differences. The universe has three large, extended space dimensions (only two of which we have actually drawn), compared with the garden hose’s one, and, more important, we are now describing the spatial fabric of the universe itself, not just an object, like the garden hose, that exists within the universe. But the basic idea is the same: Like the circular girth of the garden hose, if the additional curled-up, circular dimension of the universe is extremely small, it is much harder to detect than the manifest, large, extended dimensions. In fact, if its size is small enough, it will be beyond detection by even our most powerful magnifying instruments. And, of utmost importance, the circular dimension is not merely a circular bump within the familiar extended dimensions as the illustration might lead you to believe. Rather, the circular dimension is a new dimension, one that exists at every point in the familiar extended dimensions just as each of the up-down, left-right, and back-forth dimensions exists at every point as well. It is a new and independent direction in which an ant, if it were small enough, could move. To specify the spatial location of such a microscopic ant, we would need to say where it is in the three familiar extended dimensions (represented by the grid) and also where it is in the circular dimension. We would need four pieces of spatial information; if we add in time, we get a total of five pieces of spacetime information—one more than we normally would expect.

And so, rather surprisingly, we see that although we are aware of only three extended spatial dimensions, Kaluza’s and Klein’s reasoning shows that this does not preclude the existence of additional curled-up dimensions, at least if they are very small. The universe may very well have more dimensions than meet the eye.

How small is “small?” Cutting-edge equipment can detect structures as small as a billionth of a billionth of a meter. So long as an extra dimension is curled up to a size less than this tiny distance, it is too small for us to detect. In 1926 Klein combined Kaluza’s initial suggestion with some ideas from the emerging field of quantum mechanics. His calculations indicated that the additional circular dimension might be as small as the Planck length, far shorter than experimental accessibility. Since then, physicists have called the possibility of extra tiny space dimensions Kaluza-Klein theory.

2

Comings and Goings on a Garden Hose

The tangible example of the garden hose and the illustration in Figure 8.3 are meant to give you some sense of how it is possible that our universe has extra spatial dimensions. But even for researchers in the field, it is quite difficult to visualize a universe with more than three spatial dimensions. For this reason, physicists often hone their intuition about these extra dimensions by contemplating what life would be like if we lived in an imaginary lower- dimensional universe—following the lead of Edwin Abbott’s enchanting 1884 classic popularization Flatland3—in which we slowly realize that the universe has more dimensions than those of which we are directly aware. Let’s try this by imagining a two-dimensional universe shaped like our garden hose. Doing so requires that you relinquish an “outsider’s” perspective that views the garden hose as an object in our universe. Rather, you must leave the world as we know it and enter a new Garden-hose universe in which the surface of a very long garden hose (you can think of it as being infinitely long) is all there is as far as spatial extent. Imagine that you are a tiny ant living your life on its surface.

Other books

Bound by O'Rourke, Erica
The Island by Elin Hilderbrand
Stephen Morris by Nevil Shute
Crash Into You by Kels Barnholdt
Loving Her by Hutton, CM
Trouble With Wickham by Olivia Kane