The Elegant Universe (50 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
13.58Mb size Format: txt, pdf, ePub

Although we have discussed only one familiar example, the point is true more generally: as we lower the temperature of many physical systems, at some point they undergo a phase transition that typically results in a decrease or a “breaking” of some of their previous symmetries. In fact, a system can go through a series of phase transitions if its temperature is varied over a wide enough range. Water, again, provides a simple example. If we start with H2O above 100 degrees Celsius, it is a gas: steam. In this form, the system has even more symmetry than in the liquid phase since now the individual H2O molecules have been liberated from their congested, stuck-together liquid form. Instead, they all zip around the container on completely equal footing, without forming any clumps or “cliques” in which groups of molecules single each other out for a close association at the expense of others. Molecular democracy prevails at high enough temperatures. As we lower the temperature below 100 degrees, of course, water droplets do form as we pass through a gas-liquid phase transition, and the symmetry is reduced. Continuing on to yet lower temperatures, nothing too dramatic happens until we pass through 0 degrees Celsius, when, as above, the liquid-water/solid-ice phase transition results in another abrupt decrease in symmetry.

Physicists believe that between the Planck time and a hundredth of a second ATB, the universe behaved in a very similar way, passing through at least two analogous phase transitions. At temperatures above 1028 Kelvin, the three nongravitational forces appeared as one, as symmetric as they could possibly be. (At the end of this chapter we will discuss string theory’s inclusion of the gravitational force into this high-temperature merger.) But as the temperature dropped below 1028 Kelvin, the universe underwent a phase transition in which the three forces crystallized out from their common union in different ways. Their relative strengths and the details of how they act on matter began to diverge. And so, the symmetry among the forces evident at higher temperatures was broken as the universe cooled. Nevertheless, the work of Glashow, Salam, and Weinberg (see Chapter 5) shows that not all of the high-temperature symmetry was erased: The weak and electromagnetic forces were still deeply interwoven. As the universe further expanded and cooled, nothing much happened until things simmered down to 1015 Kelvin—about 100 million times the sun’s core temperature—when the universe went through another phase transition that affected the electromagnetic and weak forces. At this temperature, they too crystallized out from their previous, more symmetric union, and as the universe continued to cool, their differences became magnified. The two phase transitions are responsible for the three apparently distinct nongravitational forces at work in the world, even though this review of cosmic history shows that the forces, in fact, are deeply related.

A Cosmological Puzzle

This post-Planck era cosmology provides an elegant, consistent, and calculationally tractable framework for understanding the universe as far back as the briefest moments after the bang. But, as with most successful theories, our new insights raise yet more detailed questions. And it turns out that some of these questions, while not invalidating the standard cosmological scenario as presented, do highlight awkward aspects that point toward the need for a deeper theory. Let’s focus on one. It is called the horizon problem, and it is one of the most important issues in modern cosmology.

Detailed studies of the cosmic background radiation have shown that regardless of which direction in the sky one points the measuring antenna, the temperature of the radiation is the same, to about one part in 100,000. If you think about it for a moment, you will realize that this is quite strange. Why should different locations in the universe, separated by enormous distances, have temperatures that are so finely matched? A seemingly natural resolution to this puzzle is to note that, yes, two diametrically opposite places in the heavens are far apart today, but like twins separated at birth, during the earliest moments of the universe they (and everything else) were very close together. Since they emerged from a common starting point, you might suggest that it’s not at all surprising that they share common physical traits such as their temperature.

In the standard big bang cosmology this suggestion fails. Here’s why. A bowl of hot soup gradually cools to room temperature because it is in contact with the colder surrounding air. If you wait long enough, the temperature of the soup and the air will, through their mutual contact, become the same. But if the soup is in a thermos, of course, it retains its heat for much longer, since there is far less communication with the outside environment. This reflects that the homogenization of temperature between two bodies relies on their having prolonged and unimpaired communication. To test the suggestion that positions in space that are currently separated by vast distances share the same temperature because of their initial contact, we must therefore examine the efficacy of information exchange between them in the early universe. At first you might think that since the positions were closer together at earlier times, communication was ever easier. But spatial proximity is only one part of the story. The other part is temporal duration.

To examine this more fully, let’s imagine studying a “film” of the cosmic expansion, but let’s review it in reverse, running the film backward in time from today toward the moment of the big bang. Since the speed of light sets a limit to how fast any signal or information of any kind can travel, matter in two regions of space can exchange heat energy and thereby have a chance of coming to a common temperature only if the distance between them at a given moment is less than the distance light can have traveled since the time of the big bang. And so, as we roll the film backward in time we see that there is a competition between how close together our spatial regions become versus how far back we have to turn the clock for them to get there. For instance, if in order for the separation of our two spatial locations to be 186,000 miles, we have to run the film back to less than a second ATB, then even though they are much closer, there is still no way for them to have any influence on each other since light would require a whole second to travel the distance between them.2 If in order for their separation to be much less, say 186 miles, we have to run the film back to less than a thousandth of a second ATB, then, again, the same conclusion follows: They can’t influence each other since in less than a thousandth of a second light can’t travel the 186 miles separating them. Carrying on in the same vein, if we have to run the film back to less than a billionth of a second ATB in order for these regions to be within one foot of each other, they still cannot influence each other since there is just not enough time since the bang for light to have traveled the 12 inches between them. This shows that just because two points in the universe get closer and closer as we head back to the bang, it is not necessarily the case that they can have had the thermal contact—like that between soup and air—necessary to bring them to the same temperature.

Physicists have shown that precisely this problem arises in the standard big bang model. Detailed calculations show that there is no way for regions of space that are currently widely separated to have had the exchange of heat energy that would explain their having the same temperature. As the word horizon refers to how far we can see—how far light can travel, so to speak—physicists call the unexplained uniformity of temperature throughout the vast expanse of the cosmos the “horizon problem.” The puzzle does not mean the standard cosmological theory is wrong. But the uniformity of temperature does strongly suggest that we are missing an important part of the cosmological story. In 1979, the physicist Alan Guth, now of the Massachusetts Institute of Technology, wrote the missing chapter.

Inflation

The root of the horizon problem is that in order to get two widely separated regions of the universe close together, we have to run the cosmic film way back toward the beginning of time. So far back, in fact, that there is not enough time for any physical influence to have traveled from one region to the other. The difficulty, therefore, is that as we run the cosmological film backward and approach the big bang, the universe does not shrink at a fast enough rate.

Well, that’s the rough idea, but it’s worthwhile sharpening the description a bit. The horizon problem stems from the fact that like a ball tossed upward, the dragging pull of gravity causes the expansion rate of the universe to slow down. This means that, for example, to halve the separation between two locations in the cosmos we must run the film back more than halfway toward its beginning. In turn, we see that to halve the separation we must more than halve the time since the big bang. Less time since the bang—proportionally speaking—means it is harder for the two regions to communicate, even though they get closer.

Guth’s resolution of the horizon problem is now simple to state. He found another solution to Einstein’s equations in which the very early universe undergoes a brief period of enormously fast expansion—a period during which, in fact, it “inflates” in size at an unheralded exponential expansion rate. Unlike the case of a ball that slows down after being tossed upward, exponential expansion gets faster as it proceeds. When we run the cosmic film in reverse, rapid accelerating expansion turns into rapid decelerating contraction. This means that to halve the separation between two locations in the cosmos (during the exponential epoch) we need run the film back less than halfway—much less, in fact. Running the film back less implies that the two regions will have had more time to communicate thermally and, like hot soup and air, they will have had ample time to come to the same temperature.

Through Guth’s discovery and later important refinements made by André Linde, now of Stanford University, Paul Steinhardt and Andreas Albrecht, then of the University of Pennsylvania, and many others, the standard cosmological model was revamped into the inflationary cosmological model. In this framework, the standard cosmological model is modified during a tiny window of time—around 10-36 to 10-34 seconds ATB—in which the universe expanded by a colossal factor of at least 1030, compared with a factor of about a hundred during the same time interval in the standard scenario. This means that in a brief flicker of time, about a trillionth of a trillionth of a trillionth of a second ATB, the size of the universe increased by a greater percentage than it has in the 15 billion years since. Before this expansion, matter that is now in far-flung regions of the cosmos was much closer together than in the standard cosmological model, making it possible for a common temperature to be easily established. Then, through Guth’s momentary burst of cosmological inflation—followed by the more usual expansion of the standard cosmological model—these regions of space were able to become separated by the vast distances we witness currently. And so, the brief but profound inflationary modification of the standard cosmological model solves the horizon problem (as well as a number of other important problems we have not discussed) and has gained wide acceptance among cosmologists.3

We summarize the history of the universe from just after the Planck time to the present, according to the current theory, in Figure 14.1.

Cosmology and Superstring Theory

There remains a sliver of Figure 14.1, between the big bang and the Planck time, that we have not yet discussed. By blindly applying the equations of general relativity to that region, physicists have found that the universe continues to get ever smaller, ever hotter, and ever denser, as we move backward in time toward the bang. At time zero, as the size of the universe vanishes, the temperature and density soar to infinity, giving us the most extreme signal that this theoretical model of the universe, firmly rooted in the classical gravitational framework of general relativity, has completely broken down.

Nature is telling us emphatically that under such conditions we must merge general relativity and quantum mechanics—in other words, we must make use of string theory. Currently, research on the implications of string theory for cosmology is at an early stage of development. Perturbative methods can, at best, give skeletal insights, since the extremes of energy, temperature, and density require precision analysis. Although the second superstring revolution has provided some nonperturbative techniques, it will be some time before they are honed for the kinds of calculations required in a cosmological setting. Nevertheless, as we now discuss, during the last decade or so, physicists have taken the first steps toward understanding string cosmology. Here is what they have found.

It appears that there are three essential ways in which string theory modifies the standard cosmological model. First, in a manner that current research continues to clarify, string theory implies that the universe has what amounts to a smallest possible size. This has profound consequences for our understanding of the universe at the moment of the bang itself, when the standard theory claims that its size has shrunk all the way to zero. Second, string theory has a small-radius/large-radius duality (intimately related to its having a smallest possible size), which also has deep cosmological significance, as we will see in a moment. Finally, string theory has more than four spacetime dimensions, and from a cosmological standpoint, we must address the evolution of them all. Let’s discuss these points in greater detail.

In the Beginning There Was a Planck-Sized Nugget

In the late 1980s, Robert Brandenberger and Cumrun Vafa made the first important strides toward understanding how the application of these string theoretic features modifies the conclusions of the standard cosmological framework. They came to two important realizations. First, as we run the clock backward in time toward the beginning, the temperature continues to rise until the size of the universe is about the Planck length in all directions. But then, the temperature hits a maximum and begins to decrease. The intuitive reason behind this is not hard to come by. Imagine for simplicity (as Brandenberger and Vafa did) that all of the space dimensions of the universe are circular. As we run the clock backward and the radius of each of these circles shrinks, the temperature of the universe increases. But as each of the radii collapses toward and then through the Planck length, we know that, within string theory, this is physically identical to the radii shrinking to the Planck length and then bouncing back toward increasing size. Since temperature goes down as the universe expands, we would expect that the futile attempt to squeeze the universe to sub-Planck size means that the temperature stops rising, hits a maximum, and then begins to decrease. Through detailed calculations, Brandenberger and Vafa explicitly verified that indeed this is the case.

Other books

Entertaining Angels by Judy Duarte
Sudden Exposure by Susan Dunlap
Darkness Taunts by Susan Illene
Knights of the Cross by Tom Harper
Nero's Fiddle by A. W. Exley
Blood and Guitars by Heather Jensen
1001 Dark Nights by Lorelei James
Blue Willow by Deborah Smith