Unlocking the Sky (20 page)

Read Unlocking the Sky Online

Authors: Seth Shulman

BOOK: Unlocking the Sky
4.43Mb size Format: txt, pdf, ePub

Along the way, as Augustus Post has put it, Curtiss has “worked his way up from the making of bicycles to the making of history.” Through his own creativity and perseverance, he designed and built a motorcycle to carry him faster than anyone had ever traveled over land. As a member of Bell’s team, he crafted an airplane that flew in public before the Wright brothers did—a plane that incorporated more lasting aeronautical features than any of the Wrights’ early designs. In France, he tested his skill as an inventor and pilot against the greatest aviators in Europe and beat them all. He mastered the problem of taking off and landing from the water. And, with his daring flight above the Hudson River, he helped open the eyes of the world to the practical potential of air travel.

Altogether, it is a stunning string of successes for a man just past his thirty-sixth birthday.

But this morning’s flight is different. For once, Curtiss and his team won’t be forging new technological ground but looking backward, promoting an appreciation of the fact that sometimes a seminal technological “failure” can be as important as the successes that may follow it. Already, the reconstruction effort has paid homage to Langley’s brilliant, creative work. Now, perhaps, a successful flight in Langley’s rebuilt aerodrome will restore his reputation and forever alter the way the story of the airplane is told.

Just a decade earlier, the aerodrome had brought Langley nothing but ridicule and the world scoffed at the possibility of heavier-than-air flight. Now airplanes have become commonplace. They have transformed the world. And yet the courts continue to wrangle—unproductively—over who should get the rightful credit for the airplane’s invention.

Given the charged backdrop of the Wrights’ protracted lawsuit against him, Curtiss surely knows that the reconstruction of Langley’s aerodrome somehow represents a fight for his own place in history as well. By resurrecting the Langley, Curtiss champions his view that technological breakthroughs emerge not in isolation but by building upon the work of those who have come before. As Zahm will express it in his official monograph for the Smithsonian on the aerodrome reconstruction: “The aeroplane as it stands today is the creation not of any one man, but rather of three generations of men.”

Curtiss squats by the lakeshore. There are no whitecaps on the water, but, with a practiced eye, he gauges the wind gusts by studying the movement of the shallow streaks of waves across the lake’s surface. Frowning, Curtiss opts, as usual, to wait until the wind dies down to his satisfaction.

Finally, at around 7
A.M
., a dozen men, in rolled-up shirtsleeves
and knee-high rubber boots, lift the gangly aerodrome and wade into the water to set it down carefully on its pontoons. Improbably enough, alighting on the surface of Lake Keuka, Langley’s ill-fated dragonfly is reborn. Now the craft will get an exceedingly rare opportunity: a second chance to make history.

From the ankle-deep water, Curtiss climbs aboard the craft to sit, as Manly had once done, on the wooden board in the little fabric-sided booth under the forward part of the frame that serves as the cockpit.

By now, many eager spectators, reporters, and photographers have gathered along the shore, including seven whom Zahm and Walcott designate as official witnesses. Unlike many of Curtiss’s demonstration flights, a quiet, almost reverential mood descends upon the crowd. The strange circumstances of the flight and the antiquated look of Langley’s contraption conspire to make everyone not just excited for the outcome but somehow mindful of the sweep of history.

Into the morning’s hush, the original motor that Manly built so long ago now coughs and roars into life and the aerodrome’s propellers start to spin. The four-winged craft, headed across the wind, starts to skid over the little waves. Then, with its huge rudder acting like a weather vane, Langley’s aerodrome, of its own accord, veers straight into the wind under full power. In what Zahm describes as a slow and “stately” takeoff, it rises on an even keel, a few feet above the water, and heads airborne toward the distant shore.

 

Feeling disproportionate drag on the aerodrome’s left wings, Curtiss cuts the aerodrome’s engine and lets the aircraft alight softly on the water after flying for just 150 feet. As a motorboat tows Cur
tiss and the aerodrome back to the shore, he explains that he landed because, unfamiliar with the controls, he feared the craft might list or even keel over. Despite the flight’s brevity, though, there is no doubt about the outcome: Langley’s aerodrome has finally flown under its own power. Without delay, the reporters on hand scramble to town to wire their stories from the back of Jim Smellie’s pharmacy.

The Curtiss-Smithsonian team’s initial feat with an airplane approximating Langley’s original, firmly establishes the viability of the aerodrome and makes headlines around the world. The next day, a front-page article in the
New York Times
declares, for instance, “‘Langley’s Folly’ flew over Lake Keuka today—approximately eleven years since it caused the country to laugh at its inventor when on its trial flight it fell into the Potomac. “As the
Times
reporter puts it: “It was one of the greatest days for aviation that the town has known.”

Not surprisingly, the
Hammondsport Herald
goes even further, suggesting that a review of the aviation field “reveals the fact that practically every machine in existence traces its ancestry quite directly back to the genius of Dr. Langley.”

News of the flight of the rebuilt aerodrome particularly pleases the aging Alexander Graham Bell. Bell had long admired his colleague Langley, whose research had inspired him and so many others to enter the emerging aeronautical field. “Congratulations on your successful vindication of Langley’s drome,” Bell wires Curtiss upon hearing the news. “This is really the crowning achievement of your career, at least so far.”

That first day, no more tests can be made on the aerodrome because, when the team returns to the lake after an excited breakfast, they discover that a bearing on one of the propeller shafts has
given way, requiring lengthy repairs. Over the next few days, however, Curtiss lifts the machine off the water for several more short flights, accommodating photographers and proving that his initial result can be successfully replicated. On June 2, Smithsonian Secretary Walcott, beaming, officially pronounces that the group has proven the viability of the original Langley aerodrome.

Before returning to Washington, Walcott orders the next phase of the work to begin with an installation of a Curtiss engine and propeller to further test the aerodynamics of Langley’s tandem-wing design.

The second phase of the experiments—to gather data on the potential of the tandem-wing design—will be placed on hold for the moment while the high-profile
America
moves to center stage. But ultimately, by the summer’s end, the aerodrome, with a new Curtiss engine and several other modifications, will remain airborne for nearly a half hour, flying in one test for a full ten miles into a stiff wind.

 

What did Curtiss and the Smithsonian team prove in the Langley reconstruction? The question has been asked and debated heatedly since the experiment was conducted in the spring of 1914 because, for literally decades to come, Orville carries on a campaign to discredit the group’s work.

Working with his British friend Griffith Brewer, Orville documents many changes that the reconstruction team made in Hammondsport. So many, in fact, that an exasperated Zahm retorts that he wonders why they don’t complain that the aircraft’s color changed from white to buff when its fabric was replaced.

Many of the changes Orville gripes about are incorporated only in the later, second phase of the work when the group makes no
secret of the fact that it is introducing modifications to test the aerodynamics of Langley’s favored tandem-wing design. The details of Orville’s charges, after all, are gleaned in only in this second phase when, in two separate trips, Brewer and Orville’s older brother Lorin are dispatched to spy on the reconstruction effort.

Nonetheless, several of Orville’s charges are significant. Most troubling, perhaps, is the fact that, from the first, the Curtiss-Smithsonian team considerably strengthened the bracing of the wings—a change that alone may well have forestalled a repeat of Langley’s debacle. They justified the additional bracing, reasonably enough, by the fact that the aerodrome had to be able to support the pontoons. But even Zahm ultimately acknowledged that the 1914 test cannot be seen to definitively prove the structural soundness of the original Langley aerodrome, only the viability of its aerodynamics and the sufficiency of its engine.

Equally noteworthy, the reconstruction team omitted the sharp-edged front extensions to the wings that Langley added to his final aerodrome model. They opted instead to leave a more rounded—and aerodynamically sound—leading edge to the wing. It is debatable whether Langley’s extensions to the wings’ forward ribs were integral to his design. But there is little doubt that the reconstruction team realized their chances of success would be greater if they ignored this misguided feature. The omission can certainly be seen to diminish the team’s claim to scrupulous scientific accuracy. But arguably, at least, it should have done little to dent their credibility. Even with this omission, as they all contended, the reconstructed aerodrome was substantially as Langley had designed it.

Nonetheless, Orville’s charges of alterations to the aircraft were delivered by Brewer along with sensational allegations of fraud in a paper presented in 1921 to the Royal Aeronautical Society in Lon
don. In the view of Brewer and Orville, the reconstruction team knowingly misrepresented their work and perpetrated a fraud on the public in order to steal the Wright brothers’ reputation as the world’s first to fly.

As Zahm strenuously counters, “To impugn the motives of the Smithsonian men associated with the work of retesting the Langley aeroplane in 1914 is a discourtesy and injustice that well might be discountenanced by an impartial society.”

But history, it seems, is not written by an impartial society but, most often, by those who crow the loudest into posterity. Accordingly, Brewer’s trumped-up charges largely stick for many decades to come. It does not seem to matter that all the principal team members involved in the reconstruction address and refute most of Orville’s and Brewer’s claims. Perhaps Zahm answers most forcefully. Challenging Brewer’s charge of a conspiracy, Zahm declares that the experiments to reconstruct the Langley aerodrome “were no more initiated for the purpose of patent litigation than were Langley’s original experiments.” Charges of any kind of a conspiracy, Zahm said, were “the irresponsible gossip of a partisan who could easily have ascertained the truth.”

Nor does it seem to make a difference that Curtiss and Manly both separately express to Orville their willingness to undertake yet another test of Langley’s aircraft under any auspices he might suggest. Orville chooses to decline the offers.

 

Looking back, the Curtiss-Smithsonian group can perhaps be faulted for an excess of zeal—as well as an indisputable conflict of interest in the aerodrome affair. All the principal team members certainly wanted to see Langley’s rebuilt airplane succeed. About that
there is no question. Most likely, their partisan enthusiasm crept into their work even while they were trying to be judicious. After all, Curtiss was particularly famous for tinkering with things until he got them to work.

Conspiracy, however, is another matter. Curtiss, Manly, Walcott, and Zahm were all accomplished and honorable men. When the controversy is inspected closely, there is little reason to doubt their actions or their word. Each of them maintained throughout their lives that they had faithfully tried to reproduce Langley’s aerodrome to his original specifications.

Adding to their testimony are recollections Henry Kleckler penned shortly before his death. His unpublished account holds particular historical significance because of his intimate involvement with the details of the reconstruction effort and the fact that, of all those involved, he had perhaps the least personal stake in the outcome. As Kleckler puts it: “We absolutely restored everything the way it was, as near as it was possible to do so.”

Such testaments are especially important because, even today, most history books accept Orville’s charges of collusion and fraud despite the fact that they prove themselves primarily to be the exaggerated claims of a bitter, aging man.

Of course, the Langley restoration did nothing to take away from Orville and Wilbur Wright’s brilliant contribution to the airplane. The Wrights’ seminal work to build the first controllable airplane is incisive, original, and clear-headed. It has been closely scrutinized by generations of scholars and justly studied as a model for technological innovation and experimentation.

Then, as now, it is beyond dispute that the Wrights were the first to fly, just as it is beyond dispute that Langley’s unmanned model flew years before the Wrights began their work in earnest.

Nor would the reconstruction effort change the outcome of
Wright v. Curtiss.
Larger historical forces would intervene to play a hand in that matter. But Orville is wrong if he would have us see the reconstruction of the Langley aerodrome as some kind of trick in which Curtiss and the Smithsonian team had to make many alterations to get the aerodrome to fly.

Quite the contrary. Even assuming Orville’s entire catalog of changes is accurate, the rebuilt aerodrome must be seen as having risen with relatively few major changes that could have enhanced its chance for success. The original motor—even in its diminished state—clearly had enough thrust to launch the aircraft; and the basic tandem-wing design, while not providing the lift of a biplane, clearly proved its viability over Lake Keuka. By any estimation, in other words, Langley must certainly be seen to have come close to creating a working prototype.

Perhaps more pertinent, as a number of aviation historians have rightly noted, with or without changes in the reconstruction process, Langley’s original aircraft itself suffered from a number of glaring deficiencies. The most obvious, of course, was the lack of any means to land. One wonders whether Langley was so focused on getting airborne that he hadn’t considered how best to land safely with a pilot. Langley is known to have been rigid in his engineering approach, and his aerodrome had a number of other important failings as well. The sharp leading edges of its wings produced unnecessary drag, for instance, and their curvature was not the most aerodynamically effective. From such a critical perspective, Langley’s aerodrome must be seen as nothing more than a dead end, despite the demonstration made by Curtiss and the Smithsonian team in 1914. No other inventors, after all, would carry forward Langley’s unusual tandem-wing design or his primitive balancing scheme.

Other books

Paradise Valley by Dale Cramer
Pale Betrayer by Dorothy Salisbury Davis
The House Of The Bears by John Creasey
Secondary Colors by Aubrey Brenner
Pure Dead Magic by Debi Gliori
Tehanu by Ursula K. Le Guin
Live Wire by Harlan Coben
Taltos by Anne Rice
The Bet by Lucinda Betts