Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 (10 page)

BOOK: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
6.8Mb size Format: txt, pdf, ePub

I visited Professor Tachi in Tokyo and witnessed some of his remarkable experiments in mixing real and virtual reality. One simple application is to make an object disappear (at least in your goggles). First, I wore a special light brown raincoat. When I spread out my arms, it resembled a large sail. Then a camera was focused on my raincoat and a second camera filmed the scenery behind me, consisting of buses and cars moving along a road. An instant later, a computer merged these two images, so the image behind me was flashed onto my raincoat, as if on a screen. If you peered into a special lens, my body vanished, leaving only the images of the cars and buses. Since my head was above the raincoat, it appeared as if my head was floating in midair, without a body, like Harry Potter wearing his invisibility cloak.

Professor Tachi then showed me some special goggles. By wearing them, I could see real objects and then make them disappear. This is not true invisibility, since it works only if you wear special goggles that merge two images. However, it is part of Professor Tachi’s grand program, which is sometimes called “augmented reality.”

By midcentury, we will live in a fully functioning cyberworld that merges the real world with images from a computer. This could radically change the workplace, commerce, entertainment, and our way of life. Augmented reality would have immediate consequences for the marketplace. The first commercial application would be to make objects become invisible, or to make the invisible become visible.

For example, if you are a pilot or a driver, you will be able to see 360 degrees around yourself, and even beneath your feet, because your goggles or lens allow you to see through the plane’s or car’s walls. This will eliminate blind spots that are responsible for scores of accidents and deaths. In a dogfight, jet pilots will be able to track enemy jets anywhere they fly, even below themselves, as if your jet were transparent. Drivers will be able to see in all directions, since tiny cameras will monitor 360 degrees of their surroundings and beam the images into their contact lenses.

If you are an astronaut making repairs on the outside of a rocket ship, you will also find this useful, since you can see right through walls, partitions, and the rocket ship’s hull. This could be lifesaving. If you are a construction worker making underground repairs, amid a mass of wires, pipes, and valves, you will know exactly how they are all connected. This could prove vital in case of a gas or steam explosion, when pipes hidden behind walls have to be repaired and reconnected quickly.

Likewise, if you are a prospector, you will be able to see right through the soil, to underground deposits of water or oil. Satellite and airplane photographs taken of a field with infrared and UV light can be analyzed and then fed into your contact lens, giving you a 3-D analysis of the site and what lies below the surface. As you walk across a barren landscape, you will “see” valuable mineral deposits via your lens.

In addition to making objects invisible, you will also be able to do the opposite: to make the invisible become visible.

If you are an architect, you will be able to walk around an empty room and suddenly “see” the entire 3-D image of the building you are designing. The designs on your blueprint will leap out at you as you wander around each room. Vacant rooms will suddenly come alive, with furniture, carpets, and decorations on the walls, allowing you to visualize your creation in 3-D before you actually build it. By simply moving your arms, you will be able to create new rooms, walls, and furniture. In this augmented world, you will have the power of a magician, waving your wand and creating any object you desire.

Internet contact lenses will recognize people’s faces, display their biographies, and translate their words as subtitles. Tourists will use them to resurrect ancient monuments. Artists and architects will use them to manipulate and reshape their virtual creations. The possibilities are endless for augmented reality. (
photo credit 1.2
)

AUGMENTED REALITY: A REVOLUTION IN TOURISM, ART, SHOPPING, AND WARFARE

As you can see, the implications for commerce and the workplace are potentially enormous. Virtually every job can be enriched by augmented reality. In addition, our lives, our entertainment, and our society will be greatly enhanced by this technology.

For example, a tourist walking in a museum can go from exhibit to exhibit as your contact lens gives you a description of each object; a virtual guide will give you a cybertour as you pass. If you are visiting some ancient ruins, you will be able to “see” complete reconstructions of the buildings and monuments in their full glory, along with historical anecdotes. The remains of the Roman Empire, instead of being broken columns and weeds, will spring back to life as you wander among them, complete with commentary and notes.

The Beijing Institute of Technology has already taken the first baby steps in this direction. In cyberspace, it recreated the fabulous Garden of Perfect Brightness, which was destroyed by British-French forces during the Second Opium War of 1860. Today, all that is left of the fabled garden is the wreckage left by marauding troops. But if you view the ruins from a special viewing platform, you can see the entire garden before you in all its splendor. In the future, this will become commonplace.

An even more advanced system was created by inventor Nikolas Neecke, who has created a walking tour of Basel, Switzerland. When you walk around its ancient streets, you see images of ancient buildings and even people superimposed on the present, as if you were a time traveler. The computer locates your position and then shows you images of ancient scenes in your goggles, as if you were transported to medieval times. Today, you have to wear large goggles and a heavy backpack full of GPS electronics and computers. Tomorrow, you will have this in your contact lens.

If you are driving a car in a foreign land, all the gauges would appear on your contact lens in English, so you would never have to glance down to see them. You will see the road signs along with explanations of any object nearby, such as tourist attractions. You will also see rapid translations of road signs.

A hiker, camper, or outdoorsman will know not just his position in a foreign land but also the names of all the plants and animals, and will be able to see a map of the area and receive weather reports. He will also see trails and camping sites that may be hidden by brush and trees.

Apartment hunters will be able to see what is available as you walk down the street or drive by in a car. Your lens will display the price, the amenities, etc., of any apartment or house that’s for sale.

And gazing at the night sky, you will see the stars and all the constellations clearly delineated, as if you were watching a planetarium show, except that the stars you see are real. You will also see where galaxies, distant black holes, and other interesting astronomical sights are located and be able to download interesting lectures.

In addition to being able to see through objects and visit foreign lands, augmented vision will be essential if you need very specialized information at a moment’s touch.

For example, if you are an actor, musician, or performer who has to memorize large amounts of material, in the future you will see all the lines or music in your lens. You won’t need teleprompters, cue cards, sheet music, or notes to remind you. You will not need to memorize anything anymore.

Other examples include:

• If you are a student and missed a lecture, you will be able to download lectures given by virtual professors on any subject and watch them. Via telepresence, an image of a real professor could appear in front of you and answer any questions you may have. You will also be able to see demonstrations of experiments, videos, etc., via your lens.
• If you are a soldier in the field, your goggles or headset may give you all the latest information, maps, enemy locations, direction of enemy fire, instructions from superiors,
etc.
In a firefight with the enemy, when bullets are whizzing by from all directions, you will be able to see through obstacles and hills and locate the enemy, since drones flying overhead can identify their positions.
• If you are a surgeon doing a delicate emergency operation, you will be able to see inside the patient (via portable MRI machines), through the body (via sensors moving inside the body), as well as access all medical records and videos of previous operations.
• If you are playing a video game, you can immerse yourself in cyberspace in your contact lens. Although you are in an empty room, you can see all your friends in perfect 3-D, experiencing some alien landscape as you prepare to do battle with imaginary aliens. It will be as if you are on the battlefield of an alien planet, with ray blasts going off all around you and your buddies.
• If you need to look up any athlete’s statistics or sports trivia, the information will spring instantly into your contact lens.

This means you would not need a cell phone, clocks or watches, or MP3 players anymore. All the icons on your various handheld objects would be projected onto your contact lenses, so that you could access them anytime you wanted. Phone calls, music Web sites,
etc.
could all be accessed this way. Many of the appliances and gadgets you have at home can be replaced by augmented reality.

Another scientist pushing the boundary of augmented reality is Pattie Maes of the MIT Media Laboratory. Instead of using special contact lenses, glasses, or goggles, she envisions projecting a computer screen onto common objects in our environment. Her project, called SixthSense, involves wearing a tiny camera and projector around your neck, like a medallion, that can project the image of a computer screen on anything in front of you, such as the wall or a table. Pushing the imaginary buttons automatically activates the computer, just as if you were typing on a real keyboard. Since the image of a computer screen can be projected on anything flat and solid in front of you, you can convert hundreds of objects into computer screens.

Also, you wear special plastic thimbles on your thumb and fingers. As you move your fingers, the computer executes instructions on the computer screen on the wall. By moving your fingers, for example, you can draw images onto the computer screen. You can use your fingers instead of a mouse to control the cursor. And if you put your hands together to make a square, you can activate a digital camera and take pictures.

This also means that when you go shopping, your computer will scan various products, identify what they are, and then give you a complete readout of their contents, calorie content, and reviews by other consumers. Since chips will cost less than bar codes, every commercial product will have its own intelligent label you can access and scan.

Another application of augmented reality might be X-ray vision, very similar to the X-ray vision found in
Superman
comics, which uses a process called “backscatter X-rays.” If your glasses or contact lens are sensitive to X-rays, it may be possible to peer through walls. As you look around, you will be able to see through objects, just as in the comic books. Every kid, when they first read
Superman
comics, dreams of being “faster than a speeding bullet, more powerful than a locomotive.” Thousands of kids don capes, jump off crates, leap into the air, and pretend to have X-ray vision, but it is also a real possibility.

One problem with ordinary X-rays is that you have to place X-ray film behind any object, expose the object to X-rays, and then develop the film. But backscattered X-rays solve all these problems. First, you have X-rays emanating from a light source that can bathe a room. Then they bounce off the walls, and pass from behind through the object you want to examine. Your goggles are sensitive to the X-rays that have passed through the object. Images seen via backscattered X-rays can be just as good as the images found in the comics. (By increasing the sensitivity of the goggles, one can reduce the intensity of the X-rays, to minimize any health risks.)

UNIVERSAL TRANSLATORS

In
Star Trek,
the
Star Wars
saga, and virtually all other science fiction films, remarkably, all the aliens speak perfect English. This is because there is something called the “universal translator” that allows earthlings to communicate instantly with any alien civilization, removing the inconvenience of tediously using sign language and primitive gestures to communicate with an alien.

Although once considered to be unrealistically futuristic, versions of the universal translator already exist. This means that in the future, if you are a tourist in a foreign country and talk to the locals, you will see subtitles in your contact lens, as if you were watching a foreign-language movie. You can also have your computer create an audio translation that is fed into your ears. This means that it may be possible to have two people carry on a conversation, with each speaking in their own language, while hearing the translation in their ears, if both have the universal translator. The translation won’t be perfect, since there are always problems with idioms, slang, and colorful expressions, but it will be good enough so you will understand the gist of what that person is saying.

Other books

The Luzhin Defense by Vladimir Nabokov
Whose Bride Is She Anyway by Dakota Cassidy
The Vampire's Kiss by Amarinda Jones
Rumors by Katy Grant
You Must Remember This by Robert J. Wagner
Paradise Island by Charmaine Ross
Rebel Power Play by David Skuy
The Gossip File by Anna Staniszewski