Secondary Schizophrenia (66 page)

Read Secondary Schizophrenia Online

Authors: Perminder S. Sachdev

BOOK: Secondary Schizophrenia
2.46Mb size Format: txt, pdf, ePub

schizophrenia? Science, 1998.

receptor antagonists ketamine and
behavior of rats. Behav

281
(5381):1264–5.

PCP have direct effects on the

Pharmacol, 1995.
6
(1):55–65.

215. Moghaddam B., Adams B., Verma
dopamine D-2 and serotonin

207. Rung J. P., Carlsson A.,

A.,
et al.
Activation of

5-HT2 receptors – implications

Markinhuhta K. R.,
et al.

glutamatergic neurotransmission

for models of schizophrenia. Mol

(
+
)-MK-801 induced social
by ketamine: a novel step in the

Psychiatry, 2002.
7
(8):837–44.

withdrawal in rats: a model for

pathway from NMDA receptor

198. Svenningsson P., Nomikos G. G.,
negative symptoms of

blockade to dopaminergic and

Greengard P. Response to

schizophrenia. Prog

cognitive disruptions associated

comment on “Diverse

Neuropsychopharmacol Biol

with the prefrontal cortex.

psychotomimetics act through a

Psychiatry, 2005.
29
(5):827–32.

J Neurosci, 1997.
17
(8):2921–7.

common signaling pathway.”

208. Duncan G. E., Miyamoto S.,

216. Adams B., Moghaddam B.

Science, 2004;
305
(5681):180.

Leipzig J. N.,
et al.
Comparison of
Corticolimbic dopamine

199. Jordan S., Chen R., Fernalld R., et
brain metabolic activity patterns
neurotransmission is temporally

al. In vitro biochemical evidence
induced by ketamine, MK-801

dissociated from the cognitive and
that the psychotomimetics

and amphetamine in rats: support

locomotor effects of

phencyclidine, ketamine and

for NMDA receptor involvement

phencyclidine. J Neurosci, 1998.

165

dizocilpine (MK-801) are inactive
in responses to subanesthetic dose
18
(14):5545–54.

Organic Syndromes of Schizophrenia – Section 3

217. Liu J., Moghaddam B. Regulation
225. Krystal J. H., AbiDargham A.,
232. Keilhoff G., Becker A., Grecksch
of glutamate efflux by excitatory
Laruelle M.,
et al.
(2004).

G.,
et al.
Repeated application of
amino-acid receptors – evidence

Pharmacological models of

ketamine to rats induces changes

for tonic inhibitory and phasic

psychoses. In Neurobiology of

in the hippocampal expression of

excitatory regulation. J Pharmacol
Mental Illness. Charney D. S. and
parvalbumin, neuronal nitric

Exp Thera, 1995.
274
(3):1209–15.

Nestler E. J. (Eds.). New York:

oxide synthase and cFOS similar

218. Homayoun L., Jackson M. E.,

Oxford University Press,

to those found in human

Moghaddam B. Activation of

pp. 287–98.

schizophrenia. Neuroscience,

metabotropic glutamate 2/3

226. Gulyas A. I., Megias M., Emri Z.,
2004.
126
(3):591–8.

receptors reverses the effects of
et al.
Total number and ratio of
233. Morrow B. A., Elsworth J. D.,
NMDA receptor hypofunction on

excitatory and inhibitory synapses
Roth R. H. Repeated

prefrontal cortex unit activity in
converging onto single

phencyclidine in monkeys results

awake rats. J Neurophysiol, 2005.

interneurons of different types in
in loss of parvalbumin-containing
93
(4):1989–2001.

the CA1 area of the rat

axo-axonic projections in the

219. Homayoun H., Moghaddam B.

hippocampus. J Neurosci, 1999.

prefrontal cortex.

Fine-tuning of awake prefrontal

19
:10082–97.

Psychopharmacology, 2007.

cortex neurons by clozapine:

227. Jones R. S. G., Buhl E. H.

192
(2):283–90.

comparison with haloperidol and

Basket-like interneurons in layer
234. Kinney J. W., Davis C. N.,

N-desmethylclozapine. Biol

II of the entorhinal cortex exhibit
Tabarean I.,
et al.
A specific role
Psychiatry, 2007.
61
(5):679–87.

a powerful NMDA-mediated

for NR2A-containing NMDA

synaptic excitation. Neurosci Lett,

220. Homayoun H., Moghaddam B.

receptors in the maintenance of

1993.
149
(1):35–9.

NMDA receptor hypofunction

parvalbumin and GAD67

produces opposite effects on

228. Goldberg J. H., Yuste R., Tamas G.

immunoreactivity in cultured

prefrontal cortex interneurons

Ca2
+
imaging of mouse
interneurons. J Neurosci, 2006.

and pyramidal neurons.

neocortical interneurone

26
(5):1604–15.

J Neurosci, 2007.
27
(43):
dendrites: contribution of

235. Bartos M., Vida I., Jonas P.

11496–500.

Ca2
+
-permeable AMPA and
Synaptic mechanisms of

NMDA receptors to subthreshold

221. Suzuki Y., Jodo E., Takeuchi S., et

synchronized gamma oscillations

Ca2
+
dynamics. J Physiol, 2003.

al. Acute administration of

in inhibitory interneuron

551
(1):67–78.

phencyclidine induces tonic

networks. Nat Rev Neurosci, 2007.

229. Cochran S. M., Fujimura M.,

activation of medial prefrontal

8
(1):45–56.

Morris B. J.,
et al.
Acute and

cortex neurons in freely moving

236. Cunningham M. O., Hunt J.,

delayed effects of phencyclidine

rats. Neuroscience, 2002.

Middleton S.,
et al.

upon mRNA levels of markers of

114
(3):769–79.

Region-specific reduction in

glutamatergic and GABAergic

222. Jodo E., Suzuki Y., Katayama T., et

entorhinal gamma oscillations

neurotransmitter function in the

al. Activation of medial prefrontal

and parvalbumin-

rat brain. Synapse, 2002.

cortex by phencyclidine is

immunoreactive neurons in

46
(3):206–14.

mediated via a hippocampo-

animal models of psychiatric

230. Rujescu D., Bender A., Keck M., et

prefrontal pathway. Cereb Cortex,

illness. J Neurosci, 2006.

al. A pharmacological model for

2005.
15
(5):663–9.

26
(10):2767–76.

psychosis based on

223. Katayama T., Jodo E., Suzuki Y., et

237. Lewis D. A., Gonzalez-Burgos G.

N-methyl-D-aspartate receptor

al. Activation of medial prefrontal

Pathophysiologically based

hypofunction: Molecular, cellular,

cortex neurons by phencyclidine

treatment interventions in

functional and behavioral

is mediated via AMPA/kainate

schizophrenia. Nat Med, 2006.

abnormalities. Biol Psychiatry,

glutamate receptors in

12
(9):1016–22.

2006.
59
(8):721–9.

anesthetized rats. Neuroscience,

238. Lewis D. A., Hashimoto T.

231. Abdul-Monim Z., Neill J. C.,

2007.
150
(2):442–8.

Deciphering the disease process of

Reynolds G. P. Subchronic

224. Sharp F. R., Tomitaka M.,

schizophrenia: the contribution of

psychotomimetic phencyclidine

Bernaudin M.,
et al.
Psychosis:

cortical GABA neurons. Int Rev

induces deficits in reversal

pathological activation of limbic

Neurobiol, 2007.
78
:109–31.

learning and alterations in

thalamocortical circuits by

parvalbumin-immuno-

239. Lewis D. A., Hashimoto T., Volk

psychomimetics and

reactive expression in the rat.

D. W. Cortical inhibitory neurons

schizophrenia? Trends Neurosc,

J Psychopharmacol, 2007.

and schizophrenia. Nat Rev

166

2001.
24
(6):330–4.

21
(2):198–205.

Neurosci, 2005.
6
(4):312–24.

Chapter 10 – Psychotomimetic effects of PCP, LSD, and Ecstasy

240. Lewis D. A., Gonzalez-Burgos G.

cognitive deficits and cortical

lamotrigine added to

Neuroplasticity of neocortical

dopamine dysfunction in

conventional and atypical

circuits in schizophrenia.

monkeys after long-term

antipsychotics in schizophrenia.

Neuropsychopharmacology, 2008.

administration of phencyclidine.

Biol Psychiatr, 2004.
56
(6):441–6.

33
:141–65.

Science, 1997.
277
(5328):953–5.

259. Dursun S. M., Deakin J. F.W.

241. Reynolds G. P., Harte M. K. The

250. Kristiansen L. V., Huerta I.,

Augmenting antipsychotic

neuronal pathology of

Beneyto M.,
et al.
NMDA

treatment with lamotrigine or

schizophrenia: molecules and

receptors and schizophrenia. Curr

topiramate in patients with

mechanisms. Biochem Soc Trans,

Opin Pharmacol, 2007.

treatment-resistant schizophrenia:

2007.
35
:433–6.

7
(1):48–55.

a naturalistic case series outcome

242. Basar-Eroglu C., Brand A.,

251. Javitt D. C. Glutamate and

study. J Psychopharmacol, 2001.

Hildebrandt H.,
et al.
Working

schizophrenia: phencyclidine,

15
(4):297–301.

memory related gamma

N-methyl-D-aspartate receptors,

260. Dursun S. M., McIntosh D.

oscillations in schizophrenia

and dopamine-glutamate

Clozapine plus lamotrigine in

patients. Intl J Psychophysiol, 2007.

interactions. Int Rev Neurobiol,

treatment-resistant schizophrenia.

64
(1):39–45.

2007.
78
:69.

Arch Gen Psychiatry, 1999.

56
(10):950.

243. Symond M. B., Harris A. W. F.,

252. Catts S. V., Ward P. B., Lloyd A., et
Gordon E.,
et al.
“Gamma

al. Molecular biological

261. Zoccali R., Muscatello M. R.,

synchrony” in first-episode

investigations into the role of the

Bruno A.,
et al.
The effect of

schizophrenia: a disorder of

NMDA receptor in the

lamotrigine augmentation of

temporal connectivity? Am J

pathophysiology of

clozapine in a sample of

Psychiatry, 2005.
162
(3):459–65.

schizophrenia. Aust NZ J

treatment-resistant schizophrenic

Psychiatry, 1997.
31
(1):17–26.

patients: a double-blind,

244. Light G. A., Hsu J. L., Hsieh M.

placebo-controlled study.

H.,
et al.
Gamma band

253. Carlsson A. The current status of

Schizophr Res, 2007.

oscillations reveal neural network

the dopamine hypothesis of

93
(1–3):109–16.

cortical coherence dysfunction in

schizophrenia. Neuropsychophar-

schizophrenia patients. Biol

macology, 1988.
1
(3):179–86.

262. Tiihonen J., Hallikainen T.,

Psychiatry, 2006.
60
(11):1231–40.

254. Carlsson M., Carlsson A.

Ryynanen O. P.,
et al.
Lamotrigine
245. Spencer K. M. Abnormal neural

Schizophrenia – a subcortical

in treatment-resistant

synchrony in schizophrenia.

Other books

Bad Behavior by Cristina Grenier
Genetics of Original Sin by Christian De Duve
Más lecciones de cine by Laurent Tirard
Hard Way by Katie Porter