Read The Cerebellum: Brain for an Implicit Self Online
Authors: Masao Ito
Tags: #Science, #Life Sciences, #Medical, #Biology, #Neurology, #Neuroscience
Hashimoto K, Kano M (2003) Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron 38:785–796.
Hashimoto M, Mikoshiba K (2004) Neuronal birthdate-specific gene transfer with adenoviral vectors. J Neurosci 24:286–296.
Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Ca
2+
-assisted receptor-driven endocannabinoid release: mechanism relevant to associate pre- and postsynaptic activities. Cur Opinion Neurobiol 17:360–365.
Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M (2009) Influence of parallel fiber–Purkinje cell synapse formation on postnatal development of climbing fiber–Purkinje cell synapses in the cerebellum. Neuroscience 162:601-611.
Haslinger B, Erhard P, Altenmüller E, Hennenlotter A, Schwaiger M, Gräfin von Einsiedel H, Rummeny E, Conrad B, Ceballos-Baumann AO (2004) Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Human Brain Map 22:206–215.
Haslinger B, Erhard P, Weilke F, Ceballos-Baumann AO, Bartenstein P, Gräfin von Einsiedel H, Schwaiger M, Conrad B, Boecker H (2002) The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study. Brain Res Cogn Brain Res 13:159–168.
Hausser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678.
Hausser M, Mel B (2003) Dendrites: bug or feature? Cur Opinion Neurobiol 13:372–383.
Hawkes R, Leclerc N (1989) Purkinje cell axon collateral distributions reflect the chemical compartmentation of the rat cerebellar cortex. Brain Res 476:279–290.
Hebb O (1949) The organization of behavior. New York: Wiley.
Heffner R, Masterton B (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 12:161–200.
Hemart N, Daniel H, Jaillard D, Crepel F (1995) Receptors and second messengers involved in long-term depression in rat cerebellar slices in vitro: a reappraisal. Eur J Neurosci 7:45–53.
Herholz K (2003) PET studies in dementia. Ann Nucl Med 17:79–89.
Hesslow G (2002) Conscious thought as simulation of behaviour and perception. Trends Cogn Sci 6:242–247.
Higgins DC (1987) The cerebellum and initiation of movement: the stretch reflex. Yale J Biol Med 60:123–131.
Highstein SM, Goldberg JM, Moschovakis AK, Fernandez C (1987) Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons. J Neurophysiol 58:4719-4738.
Hikosaka O & Wurz RH (1985) Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. J Neurophysiol 53:292–308.
Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978.
Hirai H (2000) Clustering of d glutamate receptors is regulated by the actin cytoskeleton in the dendritic spines of cultured rat Purkinje cells. Eur J Neurosci 12:563–570.
Hirai H, Matsuda S (1999) Interaction of the C-terminal domain of d glutamate receptor with spectrin in the dendritic spines of cultured Purkinje cells. Neurosci Res 34:281–287.
Hirai H, Launey T, Mikawa S, Torashima T, Yanagihara D, Kasaura T, Miyamoto A, Yuzaki M (2003) New role of ∂2-glutamate receptors in AMPA receptor trafficking and cerebellar function. Nat Neurosci 6:869-876.
Hirata Y, Highstein SM (2001) Acute adaptation of the vestibulo ocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. J Neurophysiol 85:2267–2288.
Hirono M, Sugiyama T, Kishimoto Y, Sakai I, Miyazawa T, Kishio M, Inoue H, Nakao K, Ikeda M, Kawahara S, Kirino Y, Katsuki M, Horie H, Ishikawa Y, Yoshioka T (2001a) Phospholipase Cbeta4 and protein kinase Calpha and/or protein kinase CbetaI are involved in the induction of long term depression in cerebellar Purkinje cells. J Biol Chem 276:45236–45242.
Hirono M, Yoshioka T, Konishi S (2001b) GABAB receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci 4:1207–1216.
Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317.
Hollerbach JM (1982) Computers, brains and the control of movement. Trends Neurosci 5:189–192.
Hongo T, Jankowska E, Lundberg A (1969) The rubrospinal tract. I. Effects on alpha-motoneurons innervating hindlimb muscles in cats. Exp Brain Res 7:44–364.
Hongo T, Okada Y (1967) Cortically evoked pre- and postsynaptic inhibition of impulse transmission to the dorsal spinocerebellar tract. Exp Brain Res 3:163–177.
Hongo T, Okada Y, Sato M (1967) Corticofugal influences on transmission to the dorsal spinocerebellar tract from hindlimb primary afferents. Exp Brain Res 3:135–149.
Horikawa J, Suga N (1986) Biosonar signals and cerebellar auditory neurons of the mustached bat. J Neurophysiol 55:1247–1267.
Horne MK, Tracey DJ (1979) The afferents and projections of the ventroposterolateral thalamus in the monkey. Exp Brain Res 36:129–141.
Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493.
Houk JC (1979) Regulation of stiffness by skeletomotor reflexes. Annul Rev Physiol 41:99–114.
Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286.
Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Cur Opinion Neurobiol 14:346-352.
Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (London) 160:106–154.
Hulsmann E, Erb M, Grodd W (2003) From will to action: sequential cerebellar contributions to voluntary movement. Neuroimage 20:1485–1492.
Hultborn H (2001) State-dependent modulation of sensory feedback. J Physiol (London) 533:5–13.
Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau M-C, Mazziotta JC, Rizzolatti G (2001) Reafferent copies of imitated actions in the right superior temporal cortex. PNAS USA 98:13995–13999.
Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3(3):e79.
Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528.
Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288:1832–1835.
Iino M (1990) Biphasic Ca
2+
dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122.
Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913-2927.
Illert M, Lundberg A (1978) Collateral connections to the lateral reticular nucleus from cervical propriospinal neurons projecting to forelimb motoneurons in the cat. Neurosci Lett 7:167–172.
Illert M, Lundberg A, Padel Y, Tanaka R (1978) Integration in descending motor pathways controlling the forelimb in the cat. 5. Properties of and monosynaptic excitatory convergence on C3–C4 propriospinal neurons. Exp Brain Res 33:101–130.
Illert M, Lundberg A, Tanaka R (1977) Integration in descending motor pathways controlling the forelimb in the cat. 3. Convergence on propriospinal neurons transmitting disynaptic excitation from the corticospinal tract and other descending tracts. Exp Brain Res 29:323–346.
Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M (2003) Modular organization of internal models of tools in the human cerebellum. PNAS USA 100:5461–5466.
Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195.
Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18:5366-5373.
Iriki A (2006) The neural origins and implications of imitation, mirror neurons and tool use. Cur Opinion Neurobiol 16:660-667.
Isope P, Barbour B (2002) Properties of unitary granule cell Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22:9668–9678.
Isope P, Dieudonné S, Barbour B (2004) Temporal organization of activity in the cerebellar cortex: a manifesto for synchrony. Ann NY Acad Sci 976:164-174.
Isu N, Graf W, Sato H, Kushiro K, Zakir M, Imagawa M, Uchino Y (2000) Sacculo-ocular reflex connectivity in cats. Exp Brain Res 131:262–268.
Ito M (1970) Neurophysiological basis of the cerebellar motor control system. Intern J Neurol 7:162–176.
Ito M (1972) Neural design of cerebellar motor control system. Brain Res 40:81–84.
Ito M (1974) The control mechanisms of cerebellar motor system In: Schmidt D, Worden FG, editors. The neuroscsience, IIIrd Study Program, MIT Press, pp. 293–303. Maasachusetts USA.
Ito M (1982) Cerebellar control of the vestibulo-ocular reflex—around the flocculus hypothesis. Annu Rev Neurosci 5:275–296.
Ito M (1984) The cerebellum and neural control. New York: Raven Press.
Ito M (1986) Neural systems controlling movement. Trends Neurosci 9:515-518.
Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102.
Ito M. (1990a) Neural control as a major aspect of high-order brain function. In: JC Eccles and Creutzfeldt, editors. The principles of design and operation of the brain. Exp Brain Res Supplement. Berlin: Springer-Verlag 20,281-292.
Ito M (1990b) A new physiological concept of cerebellum. Rev Neurol (Paris) 146: 564-569.
Ito M (1993a) Cerebellar flocculus hypothesis. Nature 363:24–25.
Ito M (1993b) Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci 16:448–450.
Ito M (1997a) Obituary: John C. Eccles (1903-97)—Neuroscientist who discovered synaptic inhibition. Nature 387:664.
Cerebellar microcomplexes. In: Schmahmann J, editor. The Cerebellum and Cognition. Internat Rev Neurobiol 41, 475–487.
Ito M (1998) Cerebellar learning in the vestibulo-ocular reflex. Trends Cog Sci 2:313–321.
Ito, M (2000) My years with Sir John Eccles in memoriam: - a tireless Warrior for dualism. H. Eccles and H.-J. Biersack, editors. Ecomed, Landsberg, Germany. pp 29-36.
Ito M (2001) Cerebellar long-term depression—characterization, signal transduction and functional roles. Physiol Rev 81:1143–1195.
Ito M (2002) The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 3:896 –902.
Ito M (2005). Bases and implications of learning in the cerebellum—Adaptive control and internal model. In: CI DeZeeuw and F Cicirata, editors. Creating coordination in the cerebellum. Prog Brain Res 148, 95–109.