Read The Cerebellum: Brain for an Implicit Self Online
Authors: Masao Ito
Tags: #Science, #Life Sciences, #Medical, #Biology, #Neurology, #Neuroscience
D’Angelo E (2008) The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Front Neurosci 2:35–46.
D’Angelo E, Rossi P, Armano S, Taglietti V (1999) Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J Neurophysiol 81:277–287.
Daniel H, Hemart N, Jaillard D, Crepel F (1993) Long-term depression requires nitric oxide and guanosine 3’5’ cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci 5:1079–1082.
Daniel H, Levenes C, Crepel F (1998) Cellular mechanisms of cerebellar LTD. Trends Neurosci 21:401–407.
De Gruijl JR, van der Smagt P, de Zeeuw CI (2009) Anticipatory grip force control using a cerebellar model. Neuroscience 162:777–786.
De Schutter E (1995) Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis. Trends Neurosci 18:291–295.
De Schutter E (1999) Using realistic models to study synaptic integration in cerebellar Purkinje cells. Rev Neurosci 10:233–245.
De Schutter E, Bower JM (1994a). An active membrane model of the cerebellar Purkinje cell: I. Simulation of current clamps in slice. J Neurophysiol 71:375–400.
De Schutter E, Bower JM (1994b) An active membrane model of the cerebellar Purkinje cell. II. Simulation of synaptic responses. J Neurosci 71:401–419.
De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333.
De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, van Alphen AM, Linden DJ, Oberdick J (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508.
De Zeeuw CI, Holstege JC, Calkoen F, Ruigrok TJH, Voogd J (1988) A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res 447:369–375.
De Zeeuw CI, Holstege JC, Ruigrok TJH, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol 284:12–35.
De Zeeuw CI, Wylie DR, Digiorgi PL, Simpson JI (2004) Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 3:428–447.
Dean I, Robertson SJ, Edwards FA (2003) Serotonin drives a novel GABAergic synaptic current recorded in rat cerebellar Purkinje cells: a Lugaro cell to Purkinje cell synapse. J Neurosci 23:4457–4469.
Dean P, Porrill J, Ekerot C-F, Jörntell H (2010) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11:30–43.
Debaerea F, Wenderotha N, Sunaert S, Van Hecke P, Swinnen SP (2004) Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage 21:1416–1427.
Deiters OFK (1865) Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugetiere. Braunschweig: Vieweg.
Descartes R (1649) Discourse on the Method of Rightly Conducting the Reason, and Seeking Truth in the Sciences. Project Gutenberg, etext93/dcart10.txt (1996/12/20, 141533 bytes) [cited 1 Jan 2011].
Desmond JE, Gabrieli JDE, Wagner AD, Ginier BL, Glove GH (1997) Lobular patterns of cerebellar activation in verbal working memory and finger-tapping tasks as revealed by functional MRI. J Neurosci 17:9675–9685.
Detre JA, Nairn AC, Aswad DW, Greengard P (1984) Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3’5’-cyclic monophosphate-dependent protein kinase. J Neurosci 4:2843–2849.
Deuel RK (2002) Autism: a cognitive developmental riddle. Pediatr Neurol 26:349–357.
Devor A, Yarom Y (2002) Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings. J Neurophysiol 87:3048–3058.
Diamond A (2000) Close interrelation of motor development and cognitive development and the cerebellum and prefrontal cortex. Child Develop 71:44–56.
Dieudonne S (1998) Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol (London) 510:845–866.
Dieudonne S, Dumoulin A (2000) Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20:1837–1838.
DiGregorio DA, Nusser Z, Silver RA (2002) Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35:521–533. (Comment in: Neuron 2002. 35, 412–414. Erratum in: Neuron 2002. 36, p. 187).
Diño MR, Perachio AA, Mugnaini E (1999) Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol 28:99–123.
Diño MR, Perachio AA, Mugnaini E (2001) Cerebellar unipolar brush cells are targets of primary vestibular afferents: an experimental study in the gerbil. Exp Brain Res 140:162–170.
Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5- trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950–961.
Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press.
Doya K (1999) What are the computations of the cerebellum, the basal ganglia, and the cerebral cortex. Neural Netw 12:961–974.
Dufossé M, Ito M, Jastreboff PJ, Miyashita Y (1978) A neuronal correlate in rabbit’s cerebellum to adaptive modification of the vestibulo-ocular reflex. Brain Res 150:611–616.
Dugué GP, Dumoulin A, Triller A, Dieudonné S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25:6490-6498.
Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89:634–639.
Dumoulin A, Triller A, Dieudonné S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21:6045–6057.
Dzubay JA, Jahr CE (1999) The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. J Neurosci 19:5265–5274.
Ebner TJ, Pasalar S (2008) Cerebellum predicts the future motor state. Cerebellum 7:583–588.
Eccles JC (1963) Presynaptic and postsynaptic inhibitory actions in the spinal cord, In: Moruzzi G, Fessard A and Jasper HH editors. “Brain Mechanisms.“ Prog Brain Res 1, 1–18. Amsterdam, New York: Elsevier.
Eccles JC, Fatt P, Landgren S, Winsbury GJ (1954) Spinal cord potentials generated by volleys in the large muscle afferents. J Physiol (London) I25:590–606.
Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. New York: Springer-Verlag.
Eccles JC, Llinás R, Sasaki K (1966a) Intracellularly recorded responses of the cerebellar Purkinje cells. Exp Brain Res 1:161–183.
Eccles JC, Llinás R, Sasaki K (1966b) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol (London) 182:268–296.
Edamura M, Yang JF, Stein RB (1991) Factors that determine the magnitude and time course of human H-reflexes in locomotion. J Neurosci 11:420–427.
Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M (2005) DNER acts as a neuron-specific notch ligand during Bergmann glial development. Nat Neurosci 8:873–880.
Ekerot CF, Jörntell H (2001a) Parallel fibre receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2:101–109.
Ekerot CF, Jörntell H (2001b) Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J Neurosci 13:1303–1310.
Ekerot CF, Jörntell H, Garwicz M (1995) Functional relationship between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res 106:365–376.
Ekerot C-F, Kano M (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res 342:357–360.
Endo S, Nairn AC, Greengard P, Ito M (2003) Thr123 of rat G-substrate contributes to its action as a protein phosphatase inhibitor. Neurosci Res 45:79–89.
Endo S, Shutoh F, Le TD, Okamoto T, Ikeda T, Suzuki M, Kawahara S, Yanagihara D, Sato Y, Yamada K, Sakamoto T, Kirino Y, Hartell NA, Yamaguchi K, Itohara S, Nairn AC, Greengard P, Nagao S, Ito M (2009) Dual involvement of G-substrate in motor learning revealed by gene deletion. PNAS USA 106:3525–3530.
Endo S, Suzuki M, Sumi M, Nairn AC, Morita R, Yamakawa K, Greengard P, Ito M (1999) Molecular identification of human G-substrate, a possible downstream component of the cGMP-dependent protein kinase cascade in cerebellar Purkinje cells. PNAS USA 96:2467–2472.
Englund C, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184 -9195.
Ethier V, DS Zee, Shadmehr R (2008) Changes in control of saccades during gain adaptation. J Neurosci 28:13929 –13937.
Everling S, Fischer B (1998) The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36:885–899.
Ezure K, Graf W (1984a) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals—I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–93.
Ezure K, Graf W (1984b) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals—II. Neuronal networks underlying vestibulo-oculomotor coordination. Neuroscience 12:95–109.
Fadi X, Frazier DT (2000) Respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol 89:996–1004.
Fang PC, Stepniewska I, Kaas J, Ispilateral H (2005) Cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otalemur garnetti. J Comp Neurol 490:305–333.
Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 22:171–175.
Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, Barski JJ, Meyer M, Konnerth A, De Zeeuw CI, Hofmann F (2003) Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol 163:295–302.
Feldman AG (1986) Once more on the equilibrium-point hypothesis (lambda model) for motor control. J Mot Behav 18:17–54.
Fellows SJ, Ernst J, Schwarz M, Töpper R, Noth J (2001) Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol 112:1793–802.
Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115:155–178.
Fiez JA, Raicle ME, Balota DA, Tallal P, Petersen SE (1996) PET activation of posterior temporal regions during auditory word presentation and verb generation. Cereb Cortex 6:1–10.
Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396:753–756.
Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446.