The Elegant Universe (13 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
13.43Mb size Format: txt, pdf, ePub

Schwarzschild died only a few months after finding his solution, from a skin disease he contracted at the Russian front. He was 42. His tragically brief encounter with Einstein’s theory of gravity uncovered one of the most striking and mysterious facets of the natural world.

The second example in which general relativity flexes its muscle concerns the origin and evolution of the whole universe. As we have seen, Einstein showed that space and time respond to the presence of mass and energy. This distortion of spacetime affects the motion of other cosmic bodies moving in the vicinity of the resulting warps. In turn, the precise way in which these bodies move, by virtue of their own mass and energy, has a further effect on the warping of spacetime, which further affects the motion of the bodies, and on and on the interconnected cosmic dance goes. Through the equations of general relativity, equations rooted in geometrical insights into curved space spearheaded by the great nineteenth-century mathematician Georg Bernhard Riemann (more about Riemann later), Einstein was able to describe the mutual evolution of space, time, and matter quantitatively. To his great surprise, when the equations are applied beyond an isolated context within the universe, such as a planet or a comet orbiting a star, to the universe as a whole, a remarkable conclusion is reached: the overall size of the spatial universe must be changing in time. That is, either the fabric of the universe is stretching or it is shrinking, but it is not simply staying put. The equations of general relativity show this explicitly.

This conclusion was too much even for Einstein. He had overturned the collective intuition regarding the nature of space and time built up through everyday experiences over thousands of years, but the notion of an always existing, never changing universe was too ingrained for even this radical thinker to abandon. For this reason, Einstein revisited his equations and modified them by introducing something known as a cosmological constant, an additional term that allowed him to avoid this prediction and once again bask in the comfort of a static universe. However, 12 years later, through detailed measurements of distant galaxies, the American astronomer Edwin Hubble experimentally established that the universe is expanding. In a now-famous story in the annals of science, Einstein then returned to the original form of his equations, citing his temporary modification of them as the biggest blunder of his life.12 His initial unwillingness to accept the conclusion notwithstanding, Einstein’s theory predicted the expansion of the universe. In fact, in the early 1920s—years before Hubble’s measurements—the Russian meteorologist Alexander Friedmann had used Einstein’s original equations to show, in some detail, that all galaxies would be carried along on the substrate of stretching spatial fabric, thereby speedily moving away from all others. Hubble’s observations and numerous subsequent ones have thoroughly verified this astonishing conclusion of general relativity. By offering the explanation for the expansion of the universe, Einstein achieved one of the greatest intellectual feats of all time.

If the fabric of space is stretching, thereby increasing the distance between galaxies that are carried along on the cosmic flow, we can imagine running the evolution backward in time to learn about the origin of the universe. In reverse, the fabric of space shrinks, bringing all galaxies closer and closer to each other. Like the contents of a pressure cooker, as the shrinking universe compresses the galaxies together, the temperature dramatically increases, stars disintegrate and a hot plasma of matter’s elementary constituents is formed. As the fabric continues to shrink, the temperature rises unabated, as does the density of the primordial plasma. As we imagine running the clock backward from the age of the presently observed universe, about 15 billion years, the universe as we know it is crushed to an ever smaller size. The matter making up everything—every car, house, building, mountain on earth; the earth itself; the moon; Saturn, Jupiter, and every other planet; the sun and every other star in the Milky Way; the Andromeda galaxy with its 100 billion stars and each and every other of the more than 100 billion galaxies—is squeezed by a cosmic vise to astounding density. And as the clock is turned back to ever earlier times, the whole of the cosmos is compressed to the size of an orange, a lemon, a pea, a grain of sand, and to yet tinier size still. Extrapolating all the way back to “the beginning,” the universe would appear to have begun as a point—an image we will critically re-examine in later chapters—in which all matter and energy is squeezed together to unimaginable density and temperature. It is believed that a cosmic fireball, the big bang, erupted from this volatile mixture spewing forth the seeds from which the universe as we know it evolved.

The image of the big bang as a cosmic explosion ejecting the material contents of the universe like shrapnel from an exploding bomb is a useful one to bear in mind, but it is a little misleading. When a bomb explodes, it does so at a particular location in space and at a particular moment in time. Its contents are ejected into the surrounding space. In the big bang, there is no surrounding space. As we devolve the universe backward toward the beginning, the squeezing together of all material content occurs because all of space is shrinking. The orange-size, the pea-size, the grain of sand-size devolution describes the whole of the universe—not something within the universe. Carrying on to the beginning, there is simply no space outside the primordial pinpoint grenade. Instead, the big bang is the eruption of compressed space whose unfurling, like a tidal wave, carries along matter and energy even to this day.

Is General Relativity Right?

No deviations from the predictions of general relativity have been found in experiments performed with our present level of technology. Only time will tell if greater experimental precision will ultimately uncover some, thereby showing this theory, too, to be only an approximate description of how nature actually works. The systematic testing of theories to greater and greater levels of accuracy is, certainly, one of the ways science progresses, but it is not the only way. In fact, we have already seen this: The search for a new theory of gravity was initiated, not by an experimental refutation of Newton’s theory, but rather by the conflict of Newtonian gravity with another theory—special relativity. It was only after the discovery of general relativity as a competing theory of gravity that experimental flaws in Newton’s theory were identified by seeking out tiny but measurable ways in which the two theories differ. Thus, internal theoretical inconsistencies can play as pivotal a role in driving progress as do experimental data.

For the last half century, physics has been faced with still another theoretical conflict whose severity is on par with that between special relativity and Newtonian gravity. General relativity appears to be fundamentally incompatible with another extremely well-tested theory: quantum mechanics. Regarding the material covered in this chapter, the conflict prevents physicists from understanding what really happens to space, time, and matter when crushed together fully at the moment of the big bang or at the central point of a black hole. But more generally, the conflict alerts us to a fundamental deficiency in our conception of nature. The resolution of this conflict has eluded attempts by some of the greatest theoretical physicists, giving it a well-deserved reputation as the central problem of modern theoretical physics. Understanding the conflict requires familiarity with some basic features of quantum theory, to which we now turn.

The Elegant Universe
Chapter 4

Microscopic Weirdness

A

bit worn out from their trans-solar-system expedition, George and Gracie return to earth and head over to the H-Bar for some post-space-sojourning refreshments. George orders the usual—papaya juice on the rocks for himself and a vodka tonic for Gracie—and kicks back in his chair, hands clasped behind his head, to enjoy a freshly lit cigar. Just as he prepares to inhale, though, he is stunned to find that the cigar has vanished from between his teeth. Thinking that the cigar must somehow have slipped from his mouth, George sits forward expecting to find it burning a hole in his shirt or trousers. But it is not there. The cigar is not to be found. Gracie, roused by George’s frantic movement, glances over and spots the cigar lying on the counter directly behind George’s chair. “Strange,” George says, “how in the heck could it have fallen over there? It’s as if it went right through my head—but my tongue isn’t burned and I don’t seem to have any new holes.” Gracie examines George and reluctantly confirms that his tongue and head appear to be perfectly normal. As the drinks have just arrived, George and Gracie shrug their shoulders and chalk up the fallen cigar to one of life’s little mysteries. But the weirdness at the H-Bar continues.

George looks into his papaya juice and notices that the ice cubes are incessantly rattling around—bouncing off of each other and the sides of the glass like overcharged automobiles in a bumper-car arena. And this time he is not alone. Gracie holds up her glass, which is about half the size of George’s, and both of them see that her ice cubes are bouncing around even more frantically. They can hardly make out the individual cubes as they all blur together into an icy mass. But none of this compares to what happens next. As George and Gracie stare at her rattling drink with wide-eyed wonderment, they see a single ice cube pass through the side of her glass and drop down to the bar. They grab the glass and see that it is fully intact; somehow the ice cube went right through the solid glass without causing any damage. “Must be post-space-walk hallucinations,” says George. They each fight off the frenzy of careening ice cubes to down their drinks in one go, and head home to recover. Little do George and Gracie realize that in their haste to leave, they mistook a decorative door painted on a wall of the bar for the real thing. The patrons of the H-Bar, though, are well accustomed to people passing through walls and hardly take note of George and Gracie’s abrupt departure.

A century ago, while Conrad and Freud were illuminating the heart and the soul of darkness, the German physicist Max Planck shed the first ray of light on quantum mechanics, a conceptual framework that proclaims, among other things, that the H-Bar experiences of George and Gracie—when scaled down to the microscopic realm—need not be attributed to clouded faculties. Such unfamiliar and bizarre happenings are typical of how our universe, on extremely small scales, actually behaves.

The Quantum Framework

Quantum mechanics is a conceptual framework for understanding the microscopic properties of the universe. And just as special relativity and general relativity require dramatic changes in our worldview when things are moving very quickly or when they are very massive, quantum mechanics reveals that the universe has equally if not more startling properties when examined on atomic and subatomic distance scales. In 1965, Richard Feynman, one of the greatest practitioners of quantum mechanics, wrote,

There was a time when the newspapers said that only twelve men understood the theory of relativity. I do not believe there ever was such a time. There might have been a time when only one man did because he was the only guy who caught on, before he wrote his paper. But after people read the paper a lot of people understood the theory of relativity in one way or other, certainly more than twelve. On the other hand I think I can safely say that nobody understands quantum mechanics.1

Although Feynman expressed this view more than three decades ago, it applies equally well today What he meant is that although the special and general theories of relativity require a drastic revision of previous ways of seeing the world, when one fully accepts the basic principles underlying them, the new and unfamiliar implications for space and time follow directly from careful logical reasoning. If you ponder the descriptions of Einstein’s work in the preceding two chapters with adequate intensity, you will—if even for just a moment—recognize the inevitability of the conclusions we have drawn. Quantum mechanics is different. By 1928 or so, many of the mathematical formulas and rules of quantum mechanics had been put in place and, ever since, it has been used to make the most precise and successful numerical predictions in the history of science. But in a real sense those who use quantum mechanics find themselves following rules and formulas laid down by the “founding fathers” of the theory—calculational procedures that are straightforward to carry out—without really understanding why the procedures work or what they really mean. Unlike relativity, few if any people ever grasp quantum mechanics at a “soulful” level.

What are we to make of this? Does it mean that on a microscopic level the universe operates in ways so obscure and unfamiliar that the human mind, evolved over eons to cope with phenomena on familiar everyday scales, is unable to fully grasp “what really goes on”? Or, might it be that through historical accident physicists have constructed an extremely awkward formulation of quantum mechanics that, although quantitatively successful, obfuscates the true nature of reality? No one knows. Maybe some time in the future some clever person will see clear to a new formulation that will fully reveal the “whys” and the “whats” of quantum mechanics. And then again, maybe not. The only thing we know with certainty is that quantum mechanics absolutely and unequivocally shows us that a number of basic concepts essential to our understanding of the familiar everyday world fail to have any meaning when our focus narrows to the microscopic realm. As a result, we must significantly modify both our language and our reasoning when attempting to understand and explain the universe on atomic and subatomic scales.

In the following sections we will develop the basics of this language and describe a number of the remarkable surprises it entails. If along the way quantum mechanics seems to you to be altogether bizarre or even ludicrous, you should bear in mind two things. First, beyond the fact that it is a mathematically coherent theory, the only reason we believe in quantum mechanics is because it yields predictions that have been verified to astounding accuracy. If someone can tell you volumes of intimate details of your childhood in excruciating detail, it’s hard not to believe their claim of being your long-lost sibling. Second, you are not alone in having this reaction to quantum mechanics. It is a view held to a greater or lesser extent by some of the most revered physicists of all time. Einstein refused to accept quantum mechanics fully. And even Niels Bohr, one of the central pioneers of quantum theory and one of its strongest proponents, once remarked that if you do not get dizzy sometimes when you think about quantum mechanics, then you have not really understood it.

Other books

A Damaged Trust by Amanda Carpenter
My Holiday in North Korea by Wendy E. Simmons
Finding My Highlander by Aleigha Siron
Torn by Gilli Allan
Dark Days by James Ponti
TheBrokenOrnament by Tianna Xander
Maps and Legends by Michael Chabon
Aloha, Candy Hearts by Anthony Bidulka