The Elegant Universe (16 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
4.28Mb size Format: txt, pdf, ePub

Matter Particles Are Also Waves

In the first few decades of the twentieth century, many of the greatest theoretical physicists grappled tirelessly to develop a mathematically sound and physically sensible understanding of these hitherto hidden microscopic features of reality. Under the leadership of Niels Bohr in Copenhagen, for example, substantial progress was made in explaining the properties of light emitted by glowing-hot hydrogen atoms. But this and other work prior to the mid-1920s was more a makeshift union of nineteenth-century ideas with newfound quantum concepts than a coherent framework for understanding the physical universe. Compared with the clear, logical framework of Newton’s laws of motion or Maxwell’s electromagnetic theory, the partially developed quantum theory was in a chaotic state.

In 1923, the young French nobleman Prince Louis de Broglie added a new element to the quantum fray, one that would shortly help to usher in the mathematical framework of modern quantum mechanics and that earned him the 1929 Nobel Prize in physics. Inspired by a chain of reasoning rooted in Einstein’s special relativity, de Broglie suggested that the wave-particle duality applied not only to light but to matter as well. He reasoned, roughly speaking, that Einstein’s E = mc

2 relates mass to energy, that Planck and Einstein had related energy to the frequency of waves, and therefore, by combining the two, mass should have a wave-like incarnation as well. After carefully working through this line of thought, he suggested that just as light is a wave phenomenon that quantum theory shows to have an equally valid particle description, an electron—which we normally think of as being a particle—might have an equally valid description in terms of waves. Einstein immediately took to de Broglie’s idea, as it was a natural outgrowth of his own contributions of relativity and of photons. Even so, nothing is a substitute for experimental proof. Such proof was soon to come from the work of Clinton Davisson and Lester Germer.

In the mid-1920s, Davisson and Germer, experimental physicists at the Bell telephone company, were studying how a beam of electrons bounces off of a chunk of nickel. The only detail that matters for us is that the nickel crystals in such an experiment act very much like the two slits in the experiment illustrated by the figures of the last section—in fact, it’s perfectly OK to think of this experiment as being the same one illustrated there, except that a beam of electrons is used in place of a beam of light. We will adopt this point of view. When Davisson and Germer examined electrons making it through the two slits in the barrier by allowing them to hit a phosphorescent screen that recorded the location of impact of each electron by a bright dot—essentially what happens inside a television—they found something remarkable. A pattern very much akin to that of Figure 4.8 emerged. Their experiment therefore showed that electrons exhibit interference phenomena, the telltale sign of waves. At dark spots on the phosphorescent screen, electrons were somehow “canceling each other out” just like the overlapping peak and trough of water waves. Even if the beam of fired electrons was “thinned” so that, for instance, only one electron was emitted every ten seconds, the individual electrons still built up the bright and dark bands—one spot at a time. Somehow, as with photons, individual electrons “interfere” with themselves in the sense that individual electrons, over time, reconstruct the interference pattern associated with waves. We are inescapably forced to conclude that each electron embodies a wave-like character in conjunction with its more familiar depiction as a particle.

Although we have described this in the case of electrons, similar experiments lead to the conclusion that all matter has a wave-like character. But how does this jibe with our real-world experience of matter as being solid and sturdy, and in no way wave-like? Well, de Broglie set down a formula for the wavelength of matter waves, and it shows that the wavelength is proportional to Planck’s constant ħ. (More precisely, the wavelength is given by ħ divided by the material body’s momentum.) Since ħ is so small, the resulting wavelengths are similarly minuscule compared with everyday scales. This is why the wave-like character of matter becomes directly apparent only upon careful microscopic investigation. just as the large value of c, the speed of light, obscures much of the true nature of space and time, the smallness of ħ obscures the wave-like aspects of matter in the day-to-day world.

Waves of What?

The interference phenomenon found by Davisson and Germer made the wave-like nature of electrons tangibly evident. But waves of what? One early suggestion made by Austrian physicist Erwin Schrödinger was that the waves were “smeared-out” electrons. This captured some of the “feeling” of an electron wave, but it was too rough. When you smear something out, part of it is here and part of it is there. However, one never encounters half of an electron or a third of an electron or any other fraction, for that matter. This makes it hard to grasp what a smeared electron actually is. As an alternative, in 1926 German physicist Max Born sharply refined Schrödinger’s interpretation of an electron wave, and it is his interpretation—amplified by Bohr and his colleagues—that is still with us today. Born’s suggestion is one of the strangest features of quantum theory, but is supported nonetheless by an enormous amount of experimental data. He asserted that an electron wave must be interpreted from the standpoint of probability. Places where the magnitude (a bit more correctly, the square of magnitude) of the wave is large are places where the electron is more likely to be found; places where the magnitude is small are places where the electron is less likely to be found. An example is illustrated in Figure 4.9.

This is truly a peculiar idea. What business does probability have in the formulation of fundamental physics? We are accustomed to probability showing up in horse races, in coin tosses, and at the roulette table, but in those cases it merely reflects our incomplete knowledge. If we knew precisely the speed of the roulette wheel, the weight and hardness of the white marble, the location and speed of the marble when it drops to the wheel, the exact specifications of the material constituting the cubicles and so on, and if we made use of sufficiently powerful computers to carry out our calculations we would, according to classical physics, be able to predict with certainty where the marble would settle. Gambling casinos rely on your inability to ascertain all of this information and to do the necessary calculations prior to placing your bet. But we see that probability as encountered at the roulette table does not reflect anything particularly fundamental about how the world works. Quantum mechanics, on the contrary, injects the concept of probability into the universe at a far deeper level. According to Born and more than half a century of subsequent experiments, the wave nature of matter implies that matter itself must be described fundamentally in a probabilistic manner. For macroscopic objects like a coffee cup or the roulette wheel, de Broglie’s rule shows that the wave-like character is virtually unnoticeable and for most ordinary purposes the associated quantum-mechanical probability can be completely ignored. But at a microscopic level we learn that the best we can ever do is say that an electron has a particular probability of being found at any given location.

The probabilistic interpretation has the virtue that if an electron wave does what other waves can do—for instance, slam into some obstacle and develop all sorts of distinct ripples—it does not mean that the electron itself has shattered into separate pieces. Rather, it means that there are now a number of locations where the electron might be found with a non-negligible probability. In practice this means that if a particular experiment involving an electron is repeated over and over again in an absolutely identical manner, the same answer for, say, the measured position of an electron will not be found over and over again. Rather, the subsequent repeats of the experiment will yield a variety of different results with the property that the number of times the electron is found at any given location is governed by the shape of the electron’s probability wave. If the probability wave (more precisely, the square of the probability wave) is twice as large at location A than at location B, then the theory predicts that in a sequence of many repeats of the experiment the electron will be found at location A twice as often as at location B. Exact outcomes of experiments cannot be predicted; the best we can do is predict the probability that any given outcome may occur.

Even so, as long as we can determine mathematically the precise form of probability waves, their probabilistic predictions can be tested by repeating a given experiment numerous times, thereby experimentally measuring the likelihood of getting one particular result or another. Just a few months after de Broglie’s suggestion, Schrödinger took the decisive step toward this end by determining an equation that governs the shape and the evolution of probability waves, or as they came to be known, wave functions. It was not long before Schrödinger’s equation and the probabilistic interpretation were being used to make wonderfully accurate predictions. By 1927, therefore, classical innocence had been lost. Gone were the days of a clockwork universe whose individual constituents were set in motion at some moment in the past and obediently fulfilled their inescapable, uniquely determined destiny. According to quantum mechanics, the universe evolves according to a rigorous and precise mathematical formalism, but this framework determines only the probability that any particular future will happen—not which future actually ensues.

Many find this conclusion troubling or even downright unacceptable. Einstein was one. In one of physics’ most time-honored utterances, Einstein admonished the quantum stalwarts that “God does not play dice with the Universe.” He felt that probability was turning up in fundamental physics because of a subtle version of the reason it turns up at the roulette wheel: some basic incompleteness in our understanding. The universe, in Einstein’s view, had no room for a future whose precise form involves an element of chance. Physics should predict how the universe evolves, not merely the likelihood that any particular evolution might occur. But experiment after experiment—some of the most convincing ones being carried out after his death—convincingly confirm that Einstein was wrong. As the British theoretical physicist Stephen Hawking has said, on this point “Einstein was confused, not the quantum theory.”6

Nevertheless, the debate about what quantum mechanics really means continues unabated. Everyone agrees on how to use the equations of quantum theory to make accurate predictions. But there is no consensus on what it really means to have probability waves, nor on how a particle “chooses” which of its many possible futures to follow, nor even on whether it really does choose or instead splits off like a branching tributary to live out all possible futures in an ever-expanding arena of parallel universes. These interpretational issues are worthy of a book-length discussion in their own right, and, in fact, there are many excellent books that espouse one or another way of thinking about quantum theory. But what appears certain is that no matter how you interpret quantum mechanics, it undeniably shows that the universe is founded on principles that, from the standpoint of our day-to-day experiences, are bizarre.

The meta-lesson of both relativity and quantum mechanics is that when we deeply probe the fundamental workings of the universe we may come upon aspects that are vastly different from our expectations. The boldness of asking deep questions may require unforeseen flexibility if we are to accept the answers.

Feynman’s Perspective

Richard Feynman was one of the greatest theoretical physicists since Einstein. He fully accepted the probabilistic core of quantum mechanics, but in the years following World War II he offered a powerful new way of thinking about the theory. From the standpoint of numerical predictions, Feynman’s perspective agrees exactly with all that went before. But its formulation is quite different. Let’s describe it in the context of the electron two-slit experiment.

The troubling thing about Figure 4.8 is that we envision each electron as passing through either the left slit or the right slit and therefore we expect the union of Figures 4.4 and 4.5, as in Figure 4.6, to represent the resulting data accurately. An electron that passes through the right slit should not care that there also happens to be a left slit, and vice versa. But somehow it does. The interference pattern generated requires an overlapping and an intermingling between something sensitive to both slits, even if we fire electrons one by one. Schrödinger de Broglie, and Born explained this phenomenon by associating a probability wave to each electron. Like the water waves in Figure 4.7, the electron’s probability wave “sees” both slits and is subject to the same kind of interference from intermingling. Places where the probability wave is augmented by the intermingling, like the places of significant jostling in Figure 4.7, are locations where the electron is likely to be found; places where the probability wave is diminished by the intermingling, like the places of minimal or no jostling in Figure 4.7, are locations where the electron is unlikely or never to be found. Electrons hit the phosphorescent screen one by one, distributed according to this probability profile, and thereby build up an interference pattern like that in Figure 4.8.

Feynman took a different tack. He challenged the basic classical assumption that each electron either goes through the left slit or the right slit. You might think this to be such a basic property of how things work that challenging it is fatuous. After all, can’t you look in the region between the slits and the phosphorescent screen to determine through which slit each electron passes? You can. But now you have changed the experiment. To see the electron you must do something to it—for instance, you can shine light on it, that is, bounce photons off it. Now, on everyday scales photons act as negligible little probes that bounce off trees, paintings, and people with essentially no effect on the state of motion of these comparatively large material bodies. But electrons are little wisps of matter. Regardless of how gingerly you carry out your determination of the slit through which it passed, photons that bounce off the electron necessarily affect its subsequent motion. And this change in motion changes the results of our experiment. If you disturb the experiment just enough to determine the slit through which each electron passes, experiments show that the results change from that of Figure 4.8 and become like that of Figure 4.6! The quantum world ensures that once it has been established that each electron has gone through either the left slit or the right slit, the interference between the two slits disappears.

Other books

Ain’t Misbehaving by Jennifer Greene
Kennedy Wives: Triumph and Tragedy in America's Most Public Family by Hunt, Amber,Batcher, David, David Batcher
Betrayed by Trust by Frankie Robertson
Paint It Black by Michelle Perry
The Void by Brett J. Talley
The Book Club Murders by Leslie Nagel
The Spiritglass Charade by Colleen Gleason
Their Newborn Gift by Nikki Logan
The Detour by Andromeda Romano-Lax