Read The Elegant Universe Online
Authors: Brian Greene
The basic principles of general relativity and quantum mechanics allow us to calculate the approximate distance scales below which one would have to shrink in order for the pernicious phenomenon of Figure 5.1 to become apparent. The smallness of Planck’s constant—which governs the strength of quantum effects—and the intrinsic weakness of the gravitational force team up to yield a result called the Planck length, which is small almost beyond imagination: a millionth of a billionth of a billionth of a billionth of a centimeter (10-33 centimeter).7 The fifth level in Figure 5.1 thus schematically depicts the ultramicroscopic, sub-Planck length landscape of the universe. To get a sense of scale, if we were to magnify an atom to the size of the known universe, the Planck length would barely expand to the height of an average tree.
And so we see that the incompatability between general relativity and quantum mechanics becomes apparent only in a rather esoteric realm of the universe. For this reason you might well ask whether it’s worth worrying about. In fact, the physics community does not speak with a unified voice when addressing this issue. There are those physicists who are willing to note the problem, but happily go about using quantum mechanics and general relativity for problems whose typical lengths far exceed the Planck length, as their research requires. There are other physicists, however, who are deeply unsettled by the fact that the two foundational pillars of physics as we know it are at their core fundamentally incompatible, regardless of the ultramicroscopic distances that must be probed to expose the problem. The incompatibility, they argue, points to an essential flaw in our understanding of the physical universe. This opinion rests on an unprovable but profoundly felt view that the universe, if understood at its deepest and most elementary level, can be described by a logically sound theory whose parts are harmoniously united. And surely, regardless of how central this incompatibility is to their own research, most physicists find it hard to believe that, at rock bottom, our deepest theoretical understanding of the universe will be composed of a mathematically inconsistent patchwork of two powerful yet conflicting explanatory frameworks.
Physicists have made numerous attempts at modifying either general relativity or quantum mechanics in some manner so as to avoid the conflict, but the attempts, although often bold and ingenious, have met with failure after failure.
That is, until the discovery of superstring theory.8
Part III: The Cosmic Symphony
Nothing but Music: The Essentials of Superstring Theory
M
usic has long since provided the metaphors of choice for those puzzling over questions of cosmic concern. From the ancient Pythagorean “music of the spheres” to the “harmonies of nature” that have guided inquiry through the ages, we have collectively sought the song of nature in the gentle wanderings of celestial bodies and the riotous fulminations of subatomic particles. With the discovery of superstring theory, musical metaphors take on a startling reality, for the theory suggests that the microscopic landscape is suffused with tiny strings whose vibrational patterns orchestrate the evolution of the cosmos. The winds of change, according to superstring theory, gust through an aeolian universe.
By contrast, the standard model views the elementary constituents of the universe as pointlike ingredients with no internal structure. As powerful as this approach is (as we have mentioned, essentially every prediction about the microworld made by the standard model has been verified down to about a billionth of a billionth of a meter, the present-day technological limit), the standard model cannot be a complete or final theory because it does not include gravity. Moreover, attempts to incorporate gravity into its quantum-mechanical framework have failed due to the violent fluctuations in the spatial fabric that appear at ultramicroscopic distances—that is, distances shorter than the Planck length. The unresolved conflict has impelled a search for an even deeper understanding of nature. In 1984, the physicists Michael Green, then of Queen Mary College, and John Schwarz of the California Institute of Technology provided the first piece of convincing evidence that superstring theory (or string theory, for short) might well provide this understanding.
String theory offers a novel and profound modification to our theoretical description of the ultramicroscopic properties of the universe—a modification that, physicists slowly realized, alters Einstein’s general relativity in just the right way to make it fully compatible with the laws of quantum mechanics. According to string theory, the elementary ingredients of the universe are not point particles. Rather, they are tiny, one-dimensional filaments somewhat like infinitely thin rubber bands, vibrating to and fro. But don’t let the name fool you: Unlike an ordinary piece of string, which is itself composed of molecules and atoms, the strings of string theory are purported to lie deeply within the heart of matter. The theory proposes that they are ultramicroscopic ingredients making up the particles out of which atoms themselves are made. The strings of string theory are so small—on average they are about as long as the Planck length—that they appear pointlike even when examined with our most powerful equipment.
Yet the simple replacement of point particles with strands of string as the fundamental ingredients of everything has far-reaching consequences. First and foremost, string theory appears to resolve the conflict between general relativity and quantum mechanics. As we shall see, the spatially extended nature of a string is the crucial new element allowing for a single harmonious framework incorporating both theories. Second, string theory provides a truly unified theory, since all matter and all forces are proposed to arise from one basic ingredient: oscillating strings. Finally, as discussed more fully in subsequent chapters, beyond these remarkable achievements, string theory once again radically changes our understanding of spacetime.1
A Brief History of String Theory
In 1968, a young theoretical physicist named Gabriele Veneziano was struggling to make sense of various experimentally observed properties of the strong nuclear force. Veneziano, then a research fellow at CERN, the European accelerator laboratory in Geneva, Switzerland, had worked on aspects of this problem for a number of years, until one day he came upon a striking revelation. Much to his surprise, he realized that an esoteric formula concocted for purely mathematical pursuits by the renowned Swiss mathematician Leonhard Euler some two hundred years earlier—the so-called Euler beta-function—seemed to describe numerous properties of strongly interacting particles in one fell swoop. Veneziano’s observation provided a powerful mathematical encapsulation of many features of the strong force and it launched an intense flurry of research aimed at using Euler’s beta-function, and various generalizations, to describe the surfeit of data being collected at various atom smashers around the world. Nevertheless, there was a sense in which Veneziano’s observation was incomplete. Like memorized formulae used by a student who does not understand their meaning or justification, Euler’s beta-function seemed to work, but no one knew why. It was a formula in search of an explanation. This changed in 1970 when the works of Yoichiro Nambu of the University of Chicago, Holger Nielsen of the Niels Bohr Institute, and Leonard Susskind of Stanford University revealed the hitherto-unknown physics lurking behind Euler’s formula. These physicists showed that if one modeled elementary particles as little, vibrating, one-dimensional strings, their nuclear interactions could be described exactly by Euler’s function. If the pieces of string were small enough, they reasoned, they would still look like point particles, and hence could be consistent with experimental observations.
Although this provided an intuitively simple and pleasing theory, it was not long before the string description of the strong force was shown to fail. During the early 1970s, high-energy experiments capable of probing the subatomic world more deeply showed that the string model made a number of predictions that were in direct conflict with observations. At the same time, the point-particle quantum field theory of quantum chromodynamics was being developed, and its overwhelming success in describing the strong force led to the dismissal of string theory.
Most particle physicists thought that string theory had been relegated to the dustbin of science, but a few dedicated researchers kept at it. Schwarz, for instance, felt that “the mathematical structure of string theory was so beautiful and had so many miraculous properties that it had to be pointing toward something deep.”2 One of the problems physicists found with string theory was that it seemed to have a true embarrassment of riches. The theory contained configurations of vibrating string that had properties akin to those of gluons, substantiating its early claim of being a theory of the strong force. But beyond these it contained additional messenger-like particles that did not appear to have any relevance to experimental observations of the strong force. In 1974, Schwarz and Joël Scherk of the Ecole Normale Supérieure made a bold leap that transformed this apparent vice into a virtue. After studying the puzzling messenger-like patterns of string vibration, they realized that their properties matched perfectly those of the hypothesized messenger particle of the gravitational force—the graviton. Although these “smallest bundles” of the gravitational force have, as yet, never been seen, theorists can confidently predict certain basic features that they must possess, and Scherk and Schwarz found these properties to be realized exactly by certain vibrational patterns. Based on this, Scherk and Schwarz suggested that string theory had failed in its initial attempt because physicists had unduly constrained its scope. String theory is not just a theory of the strong force, they proclaimed; it is a quantum theory that includes gravity as well.3
The physics community did not receive this suggestion with unbridled enthusiasm. In fact, Schwarz recounts that “our work was universally ignored.”4 The path of progress was already littered with numerous failed attempts to unite gravity and quantum mechanics. String theory had been shown wrong in its initial effort to describe the strong force, and it seemed to many that it was senseless to try to use the theory to pursue an even grander goal. Even more devastating, subsequent studies during the late 1970s and early 1980s showed that string theory and quantum mechanics suffered from their own subtle conflicts. It appeared that the gravitational force had, once again, resisted incorporation into the microscopic description of the universe.
Such was the case until 1984. In a landmark paper culminating more than a dozen years of intense research that had been largely ignored and often outright dismissed by most physicists, Green and Schwarz established that the subtle quantum conflict afflicting string theory could be resolved. Moreover, they showed that the resulting theory had sufficient breadth to encompass all of the four forces and all of matter as well. As word of this result spread throughout the worldwide physics community, particle physicists by the hundreds dropped their research projects to launch a full-scale assault on what appeared to be the last theoretical battleground in the ancient quest to understand the deepest workings of the universe.
I began graduate school at Oxford University in October 1984. Although I was excited to be learning about the likes of quantum field theory, gauge theory, and general relativity, there was a pervasive feeling among the older graduate students that there was little or no future for particle physics. The standard model was in place and its remarkable success at predicting experimental outcomes indicated that its verification was merely a matter of time and details. Going beyond its limits to include gravity and possibly to explain the experimental input on which it relies the 19 numbers summarizing the elementary particle masses, their force charges, and the relative strengths of the forces, numbers that are known from experiment but are not understood theoretically—was so daunting a task that all but the most courageous physicists recoiled at the challenge. But six months later the mood had swung completely around. The success of Green and Schwarz finally trickled down even to first-year graduate students, and an electrifying sense of being on the inside of a profound moment in the history of physics displaced the previous ennui. A number of us consistently worked deep into the night to try to master the vast areas of theoretical physics and abstract mathematics that are required to understand string theory.
The period from 1984 to 1986 has come to be known as the “first superstring revolution.” During those three years more than a thousand research papers on string theory were written by physicists from around the world. These works showed conclusively that numerous features of the standard model—features that had been painstakingly discovered over the course of decades of research—emerged naturally and simply from the grand structure of string theory. As Michael Green has said, “The moment you encounter string theory and realize that almost all of the major developments in physics over the last hundred years emerge—and emerge with such elegance—from such a simple starting point, you realize that this incredibly compelling theory is in a class of its own.”5 Moreover, for many of these features, as we shall discuss, string theory offers a far fuller and more satisfying explanation than is found in the standard model. These developments convinced many physicists that string theory was well on its way to fulfilling its promise of being the ultimate unified theory.
Nonetheless, over and over again string theorists encountered a significant stumbling block. In theoretical physics research, one is frequently confronted with equations that are just too hard to understand or to analyze. Typically, physicists don’t give up, but try to solve the equations approximately. The situation in string theory is even more difficult. Even determining the equations themselves has proved to be so difficult that only approximate versions of them have so far been deduced. String theorists have thereby been limited to finding approximate solutions to approximate equations. After the few years of dramatic progress during the first superstring revolution, physicists found that the approximations being used were inadequate to answer a number of essential questions hindering further developments. With no concrete proposals for going beyond the approximate methods, many physicists working on string theory grew frustrated and returned to their previous lines of research. For those who remained, the late 1980s and early 1990s were trying times. Like a golden treasure securely locked in a safe and visible only through a tiny, tantalizing peephole, the beauty and promise of string theory beckoned, but no one had the key to unlock its power. Long dry spells were periodically punctuated by important discoveries, but it was clear to everyone in the field that new methods with the power to go beyond the previous approximations were required.