The Elegant Universe (18 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
3.21Mb size Format: txt, pdf, ePub

The uncertainty principle captures the heart of quantum mechanics. Features that we normally think of as being so basic as to be beyond question—that objects have definite positions and speeds and that they have definite energies at definite moments—are now seen as mere artifacts of Planck’s constant being so tiny on the scales of the everyday world. Of prime importance is that when this quantum realization is applied to the fabric of spacetime, it shows fatal imperfections in the “stitches of gravity” and leads us to the third and primary conflict physics has faced during the past century.

The Elegant Universe
Chapter 5

The Need for a New Theory: General Relativity vs. Quantum Mechanics

O

ur understanding of the physical universe has deepened profoundly during the past century. The theoretical tools of quantum mechanics and general relativity allow us to understand and make testable predictions about physical happenings from the atomic and subatomic realms all the way through phenomena occurring on the scales of galaxies, clusters of galaxies, and beyond to the structure of the whole universe itself. This is a monumental achievement. It is truly inspiring that beings confined to one planet orbiting a run-of-the-mill star in the far edges of a fairly ordinary galaxy have been able, through thought and experiment, to ascertain and comprehend some of the most mysterious characteristics of the physical universe. Nevertheless, physicists by their nature will not be satisfied until they feel that the deepest and most fundamental understanding of the universe has been unveiled. This is what Stephen Hawking has alluded to as a first step toward knowing “the mind of God.”1

There is ample evidence that quantum mechanics and general relativity do not provide this deepest level of understanding. Since their usual domains of applicability are so different, most situations require the use of quantum mechanics or general relativity, but not both. Under certain extreme conditions, however, where things are very massive and very small—near the central point of black holes or the whole universe at the moment of the big bang, to name two examples—we require both general relativity and quantum mechanics for proper understanding. But like the mixing of fire and gunpowder, when we try to combine quantum mechanics and general relativity, their union brings violent catastrophe. Well-formulated physical problems elicit nonsensical answers when the equations of both these theories are commingled. The nonsense often takes the form of a prediction that the quantum-mechanical probability for some process is not 20 percent or 73 percent or 91 percent but infinity. What in the world does a probability greater than one mean, let alone one that is infinite? We are forced to conclude that there is something seriously wrong. By closely examining the basic properties of general relativity and quantum mechanics, we can identify what that something is.

The Heart of Quantum Mechanics

When Heisenberg discovered the uncertainty principle, physics turned a sharp corner, never to retrace its steps. Probabilities, wave functions, interference, and quanta all involve radically new ways of seeing reality. Nevertheless, a die-hard “classical” physicist might still have hung on to a thread of hope that when all was said and done these departures would add up to a framework not too distant from old ways of thinking. But the uncertainty principle cleanly and definitively undercut any attempt to cling to the past.

The uncertainty principle tells us that the universe is a frenetic place when examined on smaller and smaller distances and shorter and shorter time scales. We saw some evidence of this in our attempt, described in the preceding chapter, to pinpoint the location of elementary particles such as electrons: By shining light of ever higher frequency on electrons, we measure their position with ever greater precision, but at a cost, since our observations become ever more disruptive. High-frequency photons have a lot of energy and therefore give the electrons a sharp “kick,” significantly changing their velocities. Like the frenzy in a room full of children all of whose momentary positions you know with great accuracy but over whose velocities—the speeds and directions in which they are moving—you have almost no control, this inability to know both the positions and velocities of elementary particles implies that the microscopic realm is intrinsically turbulent.

Although this example conveys the basic relationship between uncertainty and frenzy, it actually reveals only part of the story. It might lead you to think, for instance, that uncertainty arises only when we clumsy observers of nature stumble onto the scene. This is not true. The example of an electron violently reacting to being confined in a small box by rattling around at high speed takes us a bit closer to the truth. Even without “direct hits” from an experimenter’s disruptive photon, the electron’s velocity severely and unpredictably changes from one moment to the next. But even this example does not fully reveal the stunning microscopic features of nature entailed by Heisenberg’s discovery. Even in the most quiescent setting imaginable, such as an empty region of space, the uncertainty principle tells us that from a microscopic vantage point there is a tremendous amount of activity. And this activity gets increasingly agitated on ever smaller distance and time scales.

Quantum accounting is essential to understand this. We saw in the preceding chapter that just as you might temporarily borrow money to overcome an important financial obstacle, a particle such as an electron can temporarily borrow energy to overcome a literal physical barrier. This is true. But quantum mechanics forces us to take the analogy one important step further. Imagine someone who is a compulsive borrower and goes from friend to friend asking for money. The shorter the time for which a friend can lend him money, the larger the loan he seeks. Borrow and return, borrow and return—over and over again with unflagging intensity he takes in money only to give it back in short order. Like stock prices on a wild, roller-coaster day on Wall Street, the amount of money the compulsive borrower possesses at any given moment goes through extreme fluctuations, but when all is said and done, an accounting of his finances shows that he is no better off than when he began.

Heisenberg’s uncertainty principle asserts that a similar frantic shifting back and forth of energy and momentum is occurring perpetually in the universe on microscopic distance and time intervals. Even in an empty region of space—inside an empty box, for example—the uncertainty principle says that the energy and momentum are uncertain: They fluctuate between extremes that get larger as the size of the box and the time scale over which it is examined get smaller and smaller. It’s as if the region of space inside the box is a compulsive “borrower” of energy and momentum, constantly extracting “loans” from the universe and subsequently “paying” them back. But what participates in these exchanges in, for instance, a quiet empty region of space? Everything. Literally. Energy (and momentum as well) is the ultimate convertible currency. E = mc

2 tells us that energy can be turned into matter and vice versa. Thus if an energy fluctuation is big enough it can momentarily cause, for instance, an electron and its antimatter companion the positron to erupt into existence, even if the region was initially empty! Since this energy must be quickly repaid, these particles will annihilate one another after an instant, relinquishing the energy borrowed in their creation. And the same is true for all of the other forms that energy and momentum can take—other particle eruptions and annihilations, wild electromagnetic-field oscillations, weak and strong force-field fluctuations—quantum-mechanical uncertainty tells us the universe is a teeming, chaotic, frenzied arena on microscopic scales. As Feynman once jested, “Created and annihilated, created and annihilated—what a waste of time.”2 Since the borrowing and repaying on average cancel each other out, an empty region of space looks calm and placid when examined with all but microscopic precision. The uncertainty principle, however, reveals that macroscopic averaging obscures a wealth of microscopic activity.3 As we will see shortly, this frenzy is the obstacle to merging general relativity and quantum mechanics.

Quantum Field Theory

Over the course of the 1930s and 1940s theoretical physicists, led by the likes of Paul Dirac, Wolfgang Pauli, Julian Schwinger, Freeman Dyson, Sin-Itiro Tomonaga, and Feynman, to name a few, struggled relentlessly to find a mathematical formalism capable of dealing with this microscopic obstreperousness. They found that Schrödinger’s quantum wave equation (mentioned in Chapter 4) was actually only an approximate description of microscopic physics—an approximation that works extremely well when one does not probe too deeply into the microscopic frenzy (either experimentally or theoretically), but that certainly fails if one does.

The central piece of physics that Schrödinger ignored in his formulation of quantum mechanics is special relativity. In fact, Schrödinger did try to incorporate special relativity initially, but the quantum equation to which this led him made predictions that proved to be at odds with experimental measurements of hydrogen. This inspired Schrödinger to adopt the time-honored tradition in physics of divide and conquer: Rather than trying, through one leap, to incorporate all we know about the physical universe in developing a new theory, it is often far more profitable to take many small steps that sequentially include the newest discoveries from the forefront of research. Schrödinger sought and found a mathematical framework encompassing the experimentally discovered wave-particle duality, but he did not, at that early stage of understanding, incorporate special relativity.4

But physicists soon realized that special relativity was central to a proper quantum-mechanical framework. This is because the microscopic frenzy requires that we recognize that energy can manifest itself in a huge variety of ways—a notion that comes from the special relativistic declaration E = mc

2. By ignoring special relativity, Schrödinger’s approach ignored the malleability of matter, energy, and motion.

Physicists focused their initial pathbreaking efforts to merge special relativity with quantum concepts on the electromagnetic force and its interactions with matter. Through a series of inspirational developments, they created quantum electrodynamics. This is an example of what has come to be called a relativistic quantum field theory, or a quantum field theory, for short. It’s quantum because all of the probabilistic and uncertainty issues are incorporated from the outset; it’s a field theory because it merges the quantum principles into the previous classical notion of a force field—in this case, Maxwell’s electromagnetic field. And finally, it’s relativistic because special relativity is also incorporated from the outset. (If you’d like a visual metaphor for a quantum field, you can pretty much invoke the image of a classical field—say, as an ocean of invisible field lines permeating space—but you should refine this image in two ways. First, you should envision a quantum field as composed of particulate ingredients, such as photons for the electromagnetic field. Second, you should imagine energy, in the form of particles’ masses and their motion, endlessly shifting back and forth from one quantum field to another as they continually vibrate through space and time.)

Quantum electrodynamics is arguably the most precise theory of natural phenomena ever advanced. An illustration of its precision can be found in the work of Toichiro Kinoshita, a particle physicist from Cornell University, who has, over the last 30 years, painstakingly used quantum electrodynamics to calculate certain detailed properties of electrons. Kinoshita’s calculations fill thousands of pages and have ultimately required the most powerful computers in the world to complete. But the effort has been well worth it: the calculations yield predictions about electrons that have been experimentally verified to an accuracy of better than one part in a billion. This is an absolutely astonishing agreement between abstract theoretical calculation and the real world. Through quantum electrodynamics, physicists have been able to solidify the role of photons as the “smallest possible bundles of light” and to reveal their interactions with electrically charged particles such as electrons, in a mathematically complete, predictive, and convincing framework.

The success of quantum electrodynamics inspired other physicists in the 1960s and 1970s to try an analogous approach for developing a quantum-mechanical understanding of the weak, the strong, and the gravitational forces. For the weak and the strong forces, this proved to be an immensely fruitful line of attack. In analogy with quantum electrodynamics, physicists were able to construct quantum field theories for the strong and the weak forces, called quantum chromodynamics and quantum electroweak theory. “Quantum chromodynamics” is a more colorful name than the more logical “quantum strong dynamics,” but it is just a name without any deeper meaning; on the other hand, the name “electroweak” does summarize an important milestone in our understanding of the forces of nature.

Through their Nobel Prize-winning work, Sheldon Glashow, Abdus Salam, and Steven Weinberg showed that the weak and electromagnetic forces are naturally united by their quantum field-theoretic description even though their manifestations seem to be utterly distinct in the world around us. After all, weak force fields diminish to almost vanishing strength on all but subatomic distance scales, whereas electromagnetic fields—visible light, radio and TV signals, X-rays—have an indisputable macroscopic presence. Nevertheless, Glashow, Salam, and Weinberg showed, in essence, that at high enough energy and temperature—such as occurred a mere fraction of a second after the big bang—electromagnetic and weak force fields dissolve into one another, take on indistinguishable characteristics, and are more accurately called electroweak fields. When the temperature drops, as it has done steadily since the big bang, the electromagnetic and weak forces crystallize out in a different manner from their common high-temperature form—through a process known as symmetry breaking that we will describe later—and therefore appear to be distinct in the cold universe we currently inhabit.

Other books

Star League 3 by H.J. Harper
As Lie The Dead by Meding, Kelly
Murder is a Girl's Best Friend by Matetsky, Amanda
Trouble by Non Pratt
Puberty by Jillian Powell
Infamous Desire by Artemis Hunt
Full Tilt by Rick Mofina