El hombre que calculaba (19 page)

BOOK: El hombre que calculaba
12.67Mb size Format: txt, pdf, ePub

Entre esas quince indicaciones deberán figurar:

  1. El número de suras del Corán.

  2. El número exacto de versículos.

  3. El número de palabras.

  4. El número de letras del Libro Increado.

  5. El número exacto de los profetas citados en la página del Libro Eterno.

Y el sabio teólogo insistió, haciendo sonar fuerte su voz:

-Quiero en fin, que aparte de las cinco indicaciones que te he dado, nos es otras diez relaciones numéricas ciertas y notable sobre elLibro Increado.

¡Uassalam!

Siguió un profundo silencio. Se esperaba con ansiedad la palabra de Beremiz. Con tranquilidad asombrosa, el joven calculador respondió:

-El Corán ¡oh sabio y venerable mufti! Consta de 144 suras, de las cuales 70 fueron dictadas en La Meca y 44 en Medina. Se divide en 611 ashrs y contiene 6.236 versículos, de los cuales 7 son del primer capítulo Fatihat y 8 del último, Los Hombres. La sura mayor es la segunda, que encierra 280 versículos. El Corán contiene 46.439 palabras y 323.670 letras, cada una de las cuales contiene diez virtudes especiales. Nuestro LibroSanto cita el nombre de 25 profetas, Issa, hijo de María, es citado 19 veces. Hay cinco animales cuyos nombres fueron tomados como epígrafes de cinco capítulos: la vaca, la abeja, la hormiga, la araña y el elefante. La sura 102 se titula: “La contestación de los números”. Es notable ese capítulo del Libro Increado por la advertencia que dirige en sus cinco versículos, a quienes se preocupan de disputas estériles sobre números que no tienen importancia alguna para el progreso espiritual de los hombres.

Al llegar a este punto, Beremiz hizo una ligera pausa y añadió luego:

-Estas son, atendiendo a vuestra petición, las indicaciones numéricas sobre el Libro deAllah. En la respuesta que acabo de formular hay un error que me apresuro a confesar. En vez de quince relaciones cité dieciséis.

-¡Por Allah!, murmuró tras de mí el viejo de la túnica azul. ¿Cómo puede un hombre saber de memoria tantos números y tantas cosas¡ ¡Es fantástico! ¡Sabe hasta las letras que tiene el Corán!

-Estudia mucho, replicó casi en secreto el vecino, gordo y con una cicatriz en la barbilla. Estudia mucho y lo recuerda todo. Ya oí algunos rumores al respecto.

-Recordar no sirve de nada, cuchicheó aún el viejecito de la cara chupada. No sirve de nada. Yo por ejemplo no me preocupo de recordar ni la edad de la hija de mi tío.

Me molestaban enormemente todos aquellos secreteos, aquellas palabras cuchicheadas a media voz.

Pero el hecho es que Mohadeb confirmó todas aquellas indicaciones que había dado Beremiz. Hasta el número de letras del Libro de Allah había sido enunciado sin error de una unidad.

Me dijeron que este docto teólogo Mohadeb era un hombre que vivía en la pobreza. Y debía ser verdad. A muchos sabios Allah les priva de riquezas, pues raramente aparecen juntas la sabiduría y la riqueza.

Beremiz había superado con brillantez la primera prueba que le habían planteado en aquel terrible debate, pero le flotaban aún unas seis.

-¡Allah quiera! –pensé- ¡Allah quiera que todo pueda seguir así, y terminar bien!

CAPITULO XXVII

Cómo un sabio Historiador interroga a Beremiz. El geómetra que no podía mirar al cielo. La Matemática de Grecia. Elogio de Eratóstenes.

Solucionado el primer caso con todas sus minucias, el segundo sabio inició el interrogatorio de Beremiz. Este ulema era historiador famoso que había dado lecciones durante veinte años en Córdoba y más tarde, por cuestiones políticas, se trasladó a El Cairo, donde pasó a residir bajo la protección del Califa. Era un hombre bajo, cuyo rostro bronceado aparecía enmarcado en una barba elíptica. Tenía los ojos mortecinos, sin brillo.

He aquí las preguntas que el sabio historiador dirigió a Beremiz:

-¡En nombre de Allah, Clemente y Misericordioso! ¡Se engañan quienes aprecian el valor de un matemático por la mayor o menor habilidad con que efectúa las operaciones o aplica las reglas banales del cálculo! A mi ver, el verdadero geómetra es el que conoce con absoluta seguridad el desarrollo y el progreso de la Matemática a través de los siglos. Estudiar la Historia de la Matemática es rendir homenaje a los ingenios maravillosos que enaltecieron y dignificaron a las antiguas civilizaciones que por su esfuerzo e ingenio pudieron desvelar algunos de los misterios mas profundos de la inmensa Naturaleza, consiguiendo, por la ciencia, elevar y mejorar la miserable condición humana. Logamos además, por medio de las páginas de la Historia, honrar a los gloriosos antepasados que trabajaron en la formación de la Matemática, y conservamos el nombre de las obras que dejaron. Quiero, pues, interrogar al Calculador sobre un hecho interesante de la Historia de la Matemática. “¿Cuál fue el geómetra célebre que se suicidó al no poder mirar al cielo?”

Beremiz meditó unos instantes y exclamó:

-Fue Eratóstenes, matemático de Cirenaica y educado al principio en Alejandría y más tarde en la Escuela de Atenas, donde aprendió las doctrinas de Platón.

Y completando la respuesta prosiguió:

-Eratóstenes fue elegido para dirigir la gran Biblioteca de la Universidad de Alejandría, cargo que ejerció hasta el fin de sus días. Además de poseer envidiables conocimientos científicos y literarios que lo distinguieron entre los mayores sabios de su tiempo, era Eratóstenes poeta, orador, filósofo y –aún más- un completo atleta. Basta decir que conquistó el título excepcional de vencedor del pentatlón, las cinco pruebas máximas de los Juegos Olímpicos. Grecia se hallaba entonces en el periodo áureo de su desarrollo científico y literario. Era la patria de los aedos, poetas que declamaban, con acompañamiento musical, en los banquetes y en las reuniones de los reyes y e los grandes jerarcas.

Conviene aclarar que entre los griegos de mayor cultura y valor el sabio Eratóstenes era considerado como un hombre extraordinario que tiraba la jabalina, escribía poemas, vencía a los grandes corredores y resolvía problemas astronómicos. Eratóstenes legó a la posteridad varias obras.

Al rey Ptolomeo III de Egipto le presentó una tabla de números primos hechos sobre una plancha metálica en la que los números múltiplos estaban marcados con un pequeño agujero. Se dio por eso el nombre de “Criba de Eratóstenes” al proceso de que se servía el sabio astrónomo para formar su tabla.

A consecuencia de una enfermedad en los ojos, adquirida a orillas del Nilo durante un viaje, Eratóstenes quedó ciego. El que cultivaba con pasión la Astronomía, se hallaba impedido de mirar al cielo y de admirar la belleza incomparable del firmamento en las noches estrelladas.

La luz azulada de Al-Schira jamás podría vencer aquella nube negra que le cubría los ojos. Abrumado por tan gran desgracia, y no pudiendo resistir el pesar que le causaba la ceguera, el sabio y atleta se suicidó dejándose morir de hambre, encerrado en su biblioteca.

El sabio historiador de ojos mortecinos, se volvió hacia el Califa y declaró, tras breve silencio:

-Me considero plenamente satisfecho con la brillante exposición histórica hecha por el sabio calculador persa. El único geómetra célebre que se suicidó fue realmente el griego Eratóstenes, poeta, astrónomo y atleta, amigo fraternal del famosísimo Arquímedes de Siracusa. ¡Iallah!

-¡Por la belleza de Selsebit!, exclamó el Califa entusiasmado. ¡Cuántas cosas acabo de aprender! ¡Cuántas cosas ignoramos! Ese griego notable que estudiaba los astros, escribía poemas y cultivado el atletismo, merece nuestra sincera admiración. De hoy en adelante, siempre, al mirar al cielo, en la noche estrellada, hacia la incomparable Al-Schira, pensaré en el fin trágico de aquel sabio geómetra que escribió el poema de su muerte entre un tesoro de libros que ya no podía leer.

Y posando con extrema cortesía su mano en el hombro del príncipe, añadió con cautivadora naturalidad:

-¡Vamos a ver ahora si el tercer ulema conseguirá vencer a nuestro Calculador!

CAPITULO XXVIII

Prosigue el memorable torneo. El tercer sabio interroga a Beremiz. La falsa inducción. Beremiz demuestra que un principio falso puede ser sugerido por ejemplos verdaderos.

El tercer sabio que debía interrogar a Beremiz era el célebre astrónomo Abul Hassan Ali de Alcalá, llegado de Bagdad por especial invitación de Al-Motacén. Era alto, huesudo, y tenía el rostro surcado de arrugas. Su pelo era rubio y ondulado. Exhibía en la muñeca derecha un ancho brazalete de oro. Dicen que en ese brazalete llevaba señaladas las doce constelaciones del Zodíaco.

El astrónomo Abul Hassan, después de saludar al rey y a los nobles, se dirigió a Beremiz. Su voz, profunda y hueca, parecía rodar pesadamente.

-Las dos respuestas que acabas de formular demuestran ¡oh Beremiz Samir! Que tienes una sólida cultura. Hablas de la ciencia griega con la misma facilidad con que cuentas las letras del Libro Sagrado. Sin embargo, en el desarrollo de la ciencia matemática, la parte más interesante es la que indica la forma de raciocinio que lleva a la verdad. Una colección de hechos está tan lejos de ser una ciencia como un montón de piedras de ser una casa. Puedo afirmar igualmente que las sabias combinaciones de hechos inexactos o de hechos que no fueron comprobados al menos en sus consecuencias, se encuentran tan lejos de formar una ciencia como se encuentra el espejismo de sustituir en el desierto a la presencia real del oasis. La ciencia debe observar los hechos y deducir de ellos leyes. Con auxilio de esas leyes se pueden prever otros hechos o mejorar las condiciones materiales de la vida. Sí, todo eso es cierto. ¿Pero cómo deducir la verdad? Se presenta pues la siguiente duda:

¿Es posible extraer en Matemática una regla falsa de una propiedad verdadera? Quiero oír tu respuesta, ¡oh Calculador!, ilustrada con un ejemplo sencillo y perfecto.

Beremiz calló, durante un rato, reflexivamente. Luego salió del recogimiento y dijo:

-Admitamos que un algebrista curioso deseara determinar la raíz cuadrada de un número de cuatro cifras. Sabemos que la raíz cuadrada de un número es otro número que, multiplicado por sí mismo, da un producto igual al número dado. Es un axioma en matemáticas.

Vamos a suponer aún que el algebrista, tomando libremente tres números a su gusto, destacase los siguientes números: 2.025, 3.025 y 9.081.

Iniciemos la resolución del problema por el número 2.025. Hechos los cálculos para dicho número, el investigador hallaría que la raíz cuadrada es igual a 45. En efecto: 45 veces 45 es igual a 2.025. Pero se puede comprobar que 45 se obtiene de la suma de 20 + 25, que son partes del número 2.025 descompuesto mediante un punto, de esta manera: 20.25

Lo mismo podría comprobar el matemático con relación al número 3.025, cuya raíz cuadrada es 55 y conviene notar que 55 es la suma de 30 + 25, partes ambas del número 3.025.

Idéntica propiedad se destaca con relación al número 9.801, cuya raíz cuadrada es 99, es decir 98 + 01.

Ante estos tres casos, el inadvertido algebrista podría sentirse inclinado a enunciar la siguiente regla:

“Para calcular la raíz cuadrada de un número de cuatro cifras, se divide el número por medio de un punto en dos partes de dos cifras cada una, y se suman las partes así formadas. La suma obtenida será la raíz cuadrada del número dado”.

Esta regla, visiblemente errónea, fue deducida de tres ejemplos verdaderos. Es posible en Matemática, llegar a la verdad por simple observación; no obstante hay que poner cuidado especial en evitar la “falsa inducción”.

El astrónomo Abul Hassan, sinceramente satisfecho con la respuesta de Beremiz, declaró que jamás había oído una explicación tan sencilla e interesante de la cuestión de la “falsa inducción matemática”.

Seguidamente, a una señal del Califa, se levantó el cuarto ulema y se dispuso a formular su pregunta.

Su nombre era Jalal Ibn-Wafrid. Era poeta, filósofo y astrólogo. En Toledo, su ciudad natal, se había hecho muy popular como narrador de historias.

Jamás olvidaré su venerable y singular figura. Nunca se borrará de mí el recuerdo de su mirada serena y bondadosa. Se adelantó hacia el extremo del estrado, y, dirigiéndose al Califa, habló así:

-Para que mi pregunta pueda ser bien comprendida, he de aclararla contando una antigua leyenda persa…

-¡Apresúrate a contarla, oh elocuente ulema! respondió el Califa. Estamos ansiosos de oír tus sabias palabras, que son, para nuestros oídos, como pendientes de oro.

El sabio toledano, con voz firme y sonora como el andar de una caravana, narró lo siguiente:

CAPITULO XXIX

En el que escuchamos una antigua leyenda persa. Lo material y lo espiritual. Los problemas humanos y trascendentes. La multiplicación más famosa. El Sultán reprime con energía la intolerancia de los jeques islamitas.

-“Un poderoso rey que gobernaba Persia y las grandes llanuras del Irán, oyó a cierto derviche decir que el verdadero sabio debía conocer, con absoluta perfección, la parte espiritual y la parte material de la vida.

Se llamaba Astor ese monarca, y su sobrenombre era “El Sereno”.

¿Qué hizo Astor? Vale la pena recordar la forma en que procedió el poderoso monarca.

Mandó llamar a los tres mayores sabios de Persia, y entregó a cada uno de ellos dos dinares de plata, diciéndoles:

-En este palacio hay tres salas iguales, completamente vacías. Cada uno de vosotros quedará encargado de llenar una de ellas, pero para esta tarea no podrá gastar suma mayor que la que acaba de recibir.

El problema era realmente difícil. Cada sabio debía llenar una sala vacía gastando solo la insignificante cantidad de dos dinares.

Partieron los sabios a fin de cumplir la misión que les había confiado el caprichoso rey Astor.

Horas después regresaron a la sala del trono. El monarca, interesado por la solución del problema, les interrogó.

El primero en ser interrogado habló así:

-Señor: gasté los dos dinares, pero la sala quedó completamente llena. Mi solución fue muy práctica. Compré varios sacos de heno y con ellos llené el aposento desde el suelo hasta el techo.

-¡Muy bien!, exclamó el rey Astor; el Sereno. Tu solución estuvo realmente bien imaginada. Conoces, en mi opinión, la parte material de la vida, y desde este punto de vista habrás de enfrentarte con los problemas que la vida te presente.

Seguidamente, el segundo sabio, después de saludar al monarca, dijo con cierto énfasis:

Other books

An Officer but No Gentleman by M. Donice Byrd
The Spoilers / Juggernaut by Desmond Bagley
A Game of Universe by Eric Nylund
The Deadly Sky by Doris Piserchia
Deviation by Heather Hildenbrand
Island of Echoes by Roman Gitlarz