Introducción a la ciencia II. Ciencias Biológicas

BOOK: Introducción a la ciencia II. Ciencias Biológicas
7.68Mb size Format: txt, pdf, ePub

 

Nueva Guía Asimov de la ciencia
es un libro publicado en dos volúmenes donde Asimov hace un extenso relato de los descubrimientos científicos en todos los campos de la ciencia.

La lectura de él es fácil y los temas son relatados brillantemente comenzando desde los primeros conocimientos sobre el tema (generalmente desde los griegos o antes, o en algunos casos en los siglos del renacimiento) hasta lo último que se descubrió sobre el tema (hasta las últimas correcciones de la última edición, aproximadamente el año 1983).

En cada tema describe los descubrimientos que se fueron sucediendo, narrando el contexto de la época, los logros e intentos del científico que los realizó, e incluye algo del tema científico mismo, una explicación superficial de ese tema de la ciencia (algunas veces no tan superficial, pero al tratarse de todos los campos de la ciencia, obviamente es difícil profundizar mucho).

Isaac Asimov

Introducción a la ciencia II

Ciencias Biológicas

ePUB v1.1

Clío
23.05.12

Título original:
Asimo's New guide to science

Traducción: Lorenzo Cortina

Asesor científico de la colección: Pedro Puigdomènech Rossel

La presente versión digital carece del apéndice
Las matemáticas en la ciencia
. En próximas versiones miraremos de incluir ese apéndice, así como mejorar las fórmulas e imágenes que aparecen en el libro.

Somos conscientes que aparecerán numerosas erratas debido a la dificultad de la maquetación. Por ello, os pedimos vuestra comprensión y vuestra colaboración.

Capítulo 11

La molécula

Materia Orgánica

El término molécula (de la palabra latina que significa «masa pequeña») originalmente se aplicó a la última unidad indivisible de una sustancia. Y, en cierto sentido, es una partícula simple, debido a que no puede desintegrarse sin perder su identidad. En efecto, una molécula de azúcar o de agua puede dividirse en átomos o grupos simples, pero en este caso deja de ser azúcar o agua. Incluso una molécula de hidrógeno pierde sus características propiedades químicas cuando se escinde en sus dos átomos de hidrógeno constituyentes.

Del mismo modo como el átomo ha sido motivo de gran excitación en la Física del siglo XX, así la molécula fue el sujeto de descubrimientos igualmente excitantes en la Química. Los químicos han sido capaces de desarrollar imágenes detalladas de la estructura de moléculas incluso muy complejas, de identificar el papel desempeñado por moléculas específicas en los sistemas vivos, de crear elaboradas moléculas nuevas, y de predecir el comportamiento de la molécula de una estructura dada con sorprendente exactitud.

Hacia mediados de este siglo, las complejas moléculas que forman las unidades clave de los tejidos vivos, las proteínas o los ácidos nucleicos, fueron estudiadas con todas las técnicas puestas a disposición por una Química y una Física avanzadas. Las dos Ciencias, «Bioquímica» (el estudio de las reacciones químicas que tienen lugar en el tejido vivo) y «Biofísica» (el estudio de las fuerzas y fenómenos físicos implicados en los procesos vivos), confluyeron para formar una nueva disciplina: la «Biología molecular». A través de los hallazgos de la Biología molecular, la Ciencia moderna ha logrado, en una sola generación de esfuerzos, todo salvo definir exactamente dónde se halla la frontera entre lo vivo y lo inanimado.

Pero, hace menos de un siglo y medio, no se comprendía siquiera la estructura de la molécula más sencilla. Casi todo lo que los químicos de comienzos del siglo XIX podían hacer era dividir la materia en dos grandes categorías. Desde hacía tiempo se habían percatado (incluso en los días de los alquimistas) de que las sustancias pertenecían a dos clases claramente distintas, por lo que se refería a su respuesta al calor. Un grupo —por ejemplo, sal, plomo, agua— permanecía básicamente inalterado después de ser calentado. La sal podía volverse incandescente cuando se calentaba, el plomo se fundía, el agua se evaporaba —pero al enfriarse de nuevo a la temperatura de partida volvían a adquirir su forma original, nada peor, aparentemente, para su experiencia—. Por otra parte, el segundo grupo de sustancias —por ejemplo, el azúcar, el aceite de oliva— cambiaban de forma permanente, por la acción del calor. El azúcar se acaramelaba al calentarse y permanecía carbonizado después de enfriarse; el aceite de oliva se evaporaba y este vapor no se condensaba al enfriarse. Eventualmente, los científicos notaron que las sustancias resistentes al calor procedían por lo general del mundo inanimado del aire, océano, y suelo, mientras que las sustancias combustibles procedían del mundo vivo, bien directamente de la materia viva o de sus restos muertos. En 1807, el químico sueco Jöns Jakob Berzelius denominó «orgánicas» a las sustancias combustibles (debido a que derivaban, directa o indirectamente, de los organismos vivos) y a todas las demás «inorgánicas».

Inicialmente, la Química centró su atención sobre las sustancias inorgánicas. El estudio del comportamiento de los, gases inorgánicos condujo al desarrollo de la teoría atómica. Una vez se estableció tal teoría, se aclaró pronto la naturaleza de las moléculas inorgánicas. El análisis mostró que las moléculas inorgánicas consistían, por lo general, en un pequeño número de átomos diferentes en proporciones definidas. La molécula de agua contenía dos átomos de hidrógeno y uno de oxígeno; la molécula de sal contenía un átomo de sodio y uno de cloro; el ácido sulfúrico contenía dos átomos de hidrógeno, uno de azufre. Y cuatro de oxígeno, etc.

Cuando los químicos comenzaron a analizar las sustancias orgánicas, el cuadro que se les ofreció parecía ser totalmente distinto. Las sustancias podían tener exactamente la misma composición y, no obstante, mostrar propiedades muy distintas. (Por ejemplo, el alcohol etílico está compuesto de 2 átomos de carbono, 1 átomo de oxígeno y 6 átomos de hidrógeno; también está compuesto así el éter dimetílico. No obstante, uno es un líquido a la temperatura ambiente, mientras que el otro es un gas.) Las moléculas orgánicas contenían muchos más átomos que las inorgánicas simples, y parecían combinadas sin demasiada lógica. Simplemente, los compuestos orgánicos no podían explicarse por las sencillas leyes de la Química, a las que tan maravillosamente se adaptaban las sustancias inorgánicas. Berzelius decidió que la química de la vida era algo distinto, algo que obedecía a su propia serie de sutiles reglas. Sólo el tejido vivo —afirmó—. Podría crear un compuesto orgánico. Su punto de vista es un ejemplo del «vitalismo».

¡Luego, en 1828, el químico alemán Friedrich Wöhler, un discípulo de Berzelius, produjo una sustancia orgánica en el laboratorio! La obtuvo al calentar un compuesto denominado cianato amónico, que era considerado en general como inorgánico. Wöhler se quedó estupefacto al descubrir que, al ser calentado, ese material se convertía en una sustancia blanca idéntica en sus propiedades a la «urea», un compuesto de la orina. Según las teorías de Berzelius, sólo el riñón vivo podía formar la urea, y Wöhler la acababa de producir a partir de una sustancia inorgánica, simplemente al aplicarle algo de calor. Wöhler repitió la experiencia muchas veces, antes de atreverse a publicar su descubrimiento. Cuando finalmente lo hizo, Berzelius y otros, al principio, rehusaron creerlo. Pero otros químicos confirmaron los resultados. Además de eso, lograron sintetizar muchos otros compuestos orgánicos a partir de precursores inorgánicos. El primero en lograr la producción de un compuesto orgánico a partir de sus elementos fue el químico alemán Adolf Wilhelm Hermann Kolbe, quien, en 1845, produjo ácido acético de esta forma. Fue realmente esto lo que puso punto final a la versión vitalista de Berzelius. Cada vez se hizo más y más evidente que las mismas leyes químicas se aplicaban por igual a las moléculas inorgánicas. Eventualmente, se ofreció una sencilla definición para distinguir entre las sustancias orgánicas y las inorgánicas: todas las sustancias que contenían carbono (con la posible excepción de unos pocos compuestos sencillos, tales como el dióxido de carbono) se denominaron orgánicas; las restantes eran inorgánicas.

Estructura química

Para poder enfrentarse con éxito a la compleja Química nueva, los químicos precisaban un simple método de abreviatura para representar los compuestos, y, afortunadamente, ya Berzelius había sugerido un sistema de símbolos conveniente y racional. Los elementos fueron designados mediante las abreviaturas de sus nombres latinos. Así C sería el símbolo para el carbono, O para el oxígeno, H para el hidrógeno, N para el nitrógeno, S para el azufre, P
[1]
para el fósforo, etc. Cuando dos elementos comenzaban con la misma letra, se utilizaba una segunda letra para distinguirlos entre sí: por ejemplo, Ca para el Calcio, Cl para el cloro, Cd para el cadmio, Co para cobalto, Cr para el cromo, etc. Sólo en unos pocos casos, los nombres latinos o latinizados (y las iniciales) son distintos de los españoles, así: el hierro
(ferrum)
tiene el Fe; la plata
(argentum)
, el Ag; el oro
(aurum)
, el Au; el cobre
(cuprum)
, el Cu; el estaño
(stannum)
, el Sn; el mercurio
(hydragyrum)
, el Hg; el antimonio
(stibium)
, el Sb; el sodio
(natrium)
, el Na; y el potasio
(kalium)
, el K. Con este sistema es fácil simbolizar la composición de una molécula. El agua se escribe H
2
O (indicando así que la molécula consiste de dos átomos de hidrógeno y un átomo de oxígeno); la sal, NaCl; el ácido sulfúrico, H
2
SO
4
, etc. A ésta se la denomina la «fórmula empírica» de un compuesto; indica de qué está formado el compuesto pero no dice nada acerca de su estructura, es decir, la forma en que los átomos de la molécula se hallan unidos entre sí.

En 1831, el barón Justus von Liebig, un colaborador de Wöhler, se dedicó al estudio de la composición de una serie de sustancias orgánicas, aplicando el «análisis químico» al campo de la Química orgánica. Calentaba una pequeña cantidad de una sustancia orgánica y retenía los gases formados (principalmente CO
2
y vapor de agua, H
2
O) con sustancias químicas apropiadas. Luego pesaba las sustancias químicas utilizadas para captar los productos de combustión, al objeto de ver cómo había aumentado su peso a causa de los productos captados. A partir del peso podía determinar la cantidad de carbono, hidrógeno y oxígeno existentes en la sustancia original. Luego era fácil calcular, a partir de los pesos atómicos, el número de cada tipo de átomo en la molécula. De esta forma, por ejemplo, estableció que la molécula del alcohol etílico tenía la fórmula C
2
H
6
O.

El método de Liebig no podía medir el nitrógeno presente en los compuestos orgánicos, pero el químico francés Jean-Baptiste-André Dumas ideó un método de combustión que recogía el nitrógeno gaseoso liberado a partir de las sustancias. Hizo uso de este método para analizar los gases de la atmósfera, con una exactitud sin precedentes, en 1841.

Los métodos del «análisis orgánico» se hicieron cada vez más y más precisos hasta alcanzar verdaderos prodigios de exactitud con los «métodos microanalíticos» del químico austríaco Fritz Pregl. Éste ideó técnicas, a principios de 1900, para el análisis exacto de cantidades de compuestos orgánicos que apenas se podían distinguir a simple vista, y, a consecuencia de ello, recibió el premio Nobel de Química en 1923.

Other books

No Way Back by Michael Crow
Baby, Don't Lose My Number by Karen Erickson
Falling Into You by Smith, Maureen
Marrow by Elizabeth Lesser
Kill Process by William Hertling
Forget Me Not by Sarah Daltry
Clockwork Twist : Dreamer by Emily Thompson
Hot Shot by Susan Elizabeth Phillips