Read Malaria and Rome: A History of Malaria in Ancient Italy Online
Authors: Robert Sallares
Tags: #ISBN-13: 9780199248506, #Oxford University Press, #USA, #History
Veggiani, A. (1973). ‘Le trasformazioni dell’ambiente naturale del Ravennate negli ultimi millenni’,
Studi Romagnoli
, 24: 3–23.
—— (1986). ‘L’ottimo climatico medievale in Europa: testimonianze lungo la fascia costiera Padano-Adriatica’,
Studi Romagnoli
, 37: 3–26.
Vera, D. (1999). ‘
Massa fundorum
: forme della grande proprietà e poteri della città in Italia fra Costantino e Gregorio Magno’,
Mélanges de l’Ecole Fr. de Rome—Antiquité
111: 991–1025.
Verdrager, J. (1964). ‘Observations on the longevity of
Plasmodium falciparum
: with special reference to findings in Mauritius’,
Bulletin of the World Health Organization
, 31: 747–51.
Verra, F. and Hughes, A. L. (2000). ‘Evidence for ancient balanced polymorphism at the Apical Membrane Antigen-1 (AMA-1) locus of Plasmodium falciparum’,
Molecular and Biochemical Parasitology
, 105: 149–53.
Vezzoso, B. (1946). ‘Influenza della malaria sulla mortalità infantile per anemia con speciale riguardo al morbo di Cooley’,
Rivista di Malariologia
, 25: 1–17.
Viazzo, P. P. (1989).
Upland communities: environment, population and social structure in the Alps since the sixteenth century
(Cambridge).
Villard, F. (1994). ‘Les sièges de Syracuse et leurs pestilences’, in Ginouvès et al. (1994), 337–44.
Vinetz, J. M., Li, J., McCutchan, T. F., and Kaslow, D. C. (1998). ‘
Plasmodium malariae
infection in an asymptomatic 74-year-old Greek woman’,
New England Journal of Medicine
, 338: 367–71.
Volpe, G. (1990).
La Daunia nell’età della romanizzazione
(Bari).
Voorips, A., Loving, S. H., and Kamerans, H. (eds.) (1991).
The Agro Pontino survey project
(Amsterdam).
326
References
Walliker, D.
et al.
(1987). ‘Genetic analysis of the human malaria parasite Plasmodium falciparum’,
Science
, 236: 1661–6.
Waters, A. P., Higgins, D. G., and McCutchan, T. F. (1991). ‘
Plasmodium falciparum
appears to have arisen as a result of a lateral transfer between avian and human hosts’,
Proceedings of the National Academy of Sciences, USA
, 88: 3140–4.
Wear, A. (1995). ‘Medicine in early modern Europe, 1500–1700’, in L. I.
Conrad
et al
.
The western medical tradition 800 BC to AD 1800
(Cambridge), 215–361.
Weatherall, D. J. (1997). ‘Thalassaemia and malaria, revisited’,
Annals of Tropical Medicine and Parasitology
, 91: 885–90.
Weiss, M. M. (1989). ‘Etruscan medicine’,
Journal of Palaeopathology
, 2: 129–64.
Wells, C. (1985). ‘A medical interpretation of the votive terracottas’, appendix to T. W. Potter, ‘A Republican healing sanctuary at Ponte di Nona near Rome and the classical tradition of votive medicine’,
Journal of the British Archaeological Association
, 138: 41–7.
Wernsdorfer, W. H. and McGregor, I. (eds.) (1988).
Malaria: principles and practice of malariology
, 2 vols. (Edinburgh).
West, M. L. (1983).
The Orphic Poems
(Oxford).
White, G. B. (1978). ‘Systematic reappraisal of the
Anopheles maculipennis complex’,
Mosquito Systematics
, 10: 14–44.
White, Jr., L. (1974). ‘Indic elements in the iconography of Petrarch’s Trionfo della Morte’,
Speculum
, 49: 201–21.
Whitley, G. (1864). ‘Sixth report of the Medical Officer of the Privy Council, as to the quantity of ague and other malarious diseases now prevailing in the principal marsh districts of England’,
Reports from Commissioners (13)
,
Public Health Records
, 28: 430–54.
Whitrow, M. (1990). ‘Wagner-Jauregg and fever therapy’,
Medical History
, 34: 294–310.
—— (1993).
Julius Wagner-Jauregg
(1857–1940) (London).
Whittle, H. C., Brown, J., Marsh, K., Greenwood, B. M., Seidelin, P., Tighe, H., and Wedderburn, L. (1984). ‘T-cell control of Epstein-Barr virus infected cells is lost during
Plasmodium falciparum
malaria’,
Nature
, 312: 449–50.
Whitworth, J., Morgan, D., Quigley, M., Smith, A., Mayanja, B., Eotu, H., Omoding, N., Okongo, M., Malamba, S., and Ojwiya, A. (2000).
‘Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study’,
Lancet
, 356: 1051–6.
Wigley, T. M. L. and Kelly, P. M. (1990). ‘Holocene climatic change, 14C
wiggles and variations in solar irradiance’,
Philosophical Transactions of the Royal Society of London
, A330: 547–60.
References
327
Wilson, F. K. (1898). ‘A case of malarial fever, with intercurrent attack of typhoid fever, illustrating the value of microscopical examination of the blood and Widal’s test in diagnosis’,
Journal of Tropical Medicine
, 2: 120–1.
Wilson, R. J. A. (2000). ‘Campanaio: an agricultural settlement in Roman Sicily’,
Antiquity
, 74: 289–90.
Wissowa, G. (1909). ‘Febris’, in
RE
6/2: 2095–6.
Wittern, R. (1989). ‘Die Wechselfieber bei Galen’,
History and Philosophy of the Life Sciences
, 11: 3–22.
Wrigley, E. A. (1978). ‘A simple model of London’s importance in changing English society and economy 1650–1750’, in P. Abrams and E. A.
Wrigley (eds.),
Towns in societies: essays in economic history and historical sociology
(Cambridge), 215–43.
—— Davies, R. S., Oeppen, J. E., and Schofield, R. S. (1997).
English population history from family reconstitution 1580–1837
(Cambridge).
—— and Schofield, R. S. (1981).
The population history of England 1541–1871: a reconstruction
(London).
Wrigley, R. (2000). ‘Pathological topographies and cultural itineraries: mapping “mal’aria” in 18th-and 19th-century Rome’, in R. Wrigley and G. Revill (eds.)
Pathologies of travel
(=
Clio Medica
, 56) (Amsterdam), 207–28.
Yan, G., Severson, D. W., and Christensen, B. M. (1997). ‘Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria’, Evolution
, 51: 441–50.
Zahar, A. R. (1974). ‘Review of the ecology of malaria vectors in the WHO
Eastern Mediterranean region’,
Bulletin of the World Health Organization
, 50: 427–40.
Zamburlini, R. (1998). ‘Il complesso
Anopheles claviger
nell’Italia nord-orientale’,
Parassitologia
, 40: 347–51.
—— (2000). ‘Anophelism in the northern Adriatic Sea littoral: from the past to the present through the studies of Piero Sepulcri’,
Parassitologia
, 21 (suppl. 1): 15 (abstract).
Zei, G., Lisa, A., and Astolfi, P. (1990). ‘Fertility and malaria in Sardinia’, Annals of Human Biology, 17: 315–30.
Zhao, Z. (1997). ‘Long-term mortality patterns in Chinese history: evidence from a recorded clan population’,
Population Studies
, 51: 117–27.
Zheng, L., Cornel, A. J., Wang, R., Erfle, H., Voss, H., Ansorge, W., Kafatos, F. C., and Collins, F. H. (1997). ‘Quantitative trait loci for refractoriness of
Anopheles gambiae
to
Plasmodium cynomolgi
B’,
Science
, 276: 425–8.
Zimmerman, P. A., Woolley, I., Masinde, G. L., Miller, S. M., McNamara, D. T., Hazlett, F., Mgone, C. S., Alpers, M. P., Genton, 328
References
B., Boatin, B. A., and Kazura, J. W. (1999). ‘Emergence of
FY*Anull
in a Plasmodium vivax-endemic region of Papua New Guinea’,
Proceedings of the National Academy of Sciences, USA
, 96: 13973–7.
Zulueta, J. de (1973). ‘Malaria and Mediterranean history’,
Parassitologia
, 15: 1–15.
—— (1987). ‘Changes in the geographical distribution of malaria throughout history’,
Parassitologia
, 29: 193–205.
—— (1994). ‘Malaria and ecosystems: from prehistory to posteradica-tion’,
Parassitologia
, 36: 7–15.
—— Ramsdale, C. D., and Coluzzi, M. (1975). ‘Receptivity to malaria in Europe’,
Bulletin of the World Health Organization
, 52: 109–11.
—— —— Cianchi, R., Bullini, L., and Coluzzi, M. (1983). ‘Observations on the taxonomic status of
Anopheles sicaulti
’,
Parassitologia
, 25: 73–92.
Zurbrigg, S. (1994). ‘Re-thinking the “human factor” in malaria mortality: the case of Punjab, 1868–1940’,
Parassitologia
, 36: 121–35.
—— (1997). ‘Did starvation protect from malaria? Distinguishing between severity and lethality of infectious disease in colonial India’, Social Science History, 21: 27–58.
Zysk, K. G. (1985).
Religious healing in the Veda: with translations and annotations of medical hymns from the Rigveda and the Atharvaveda and renderings from the corresponding ritual texts
(Philadelphia).
Human red blood cell.
Male and female sexual cells of malaria parasites,
formed by some merozoites inside erythrocytes, generally after several cycles of merozoite multiplication in the case of
P. falciparum
.
A stage of the parasite’s life cycle formed from some
sporozoites inside the human liver. Hypnozoites remain dormant for a predetermined period of time after which they give rise to relapses.
Only found in
P. vivax
, not in
P. falciparum
or
P. malariae
.
Asexual stage of malaria parasite which invades erythrocytes.
polymerase chain reaction
(PCR)
An enzymatic method for
amplifying very small quantities of DNA.
An exacerbation of low-level erythrocytic infections
of
P. falciparum
or
P. malariae
.
Production of clinical symptoms of
P. vivax
malaria by the activation of dormant hypnozoites in the liver.
The species-specific length of the erythrocytic cycle (multiplication of merozoites).
The asexual phase of multiplication of malaria parasites in the human (or other vertebrate) host.
The sexual phase of malaria reproduction in the mosquito.
A parasite stage which migrates from the stomach to the salivary glands of the mosquito, from where it can infect a person bitten by the mosquito. Once inside the human blood stream, sporozoites enter liver cells, where they either differentiate into pre-erythrocytic schizonts and then into merozoites ready to invade erythrocytes (always in
P. malariae
and
P. falciparum
), or sometimes into hypnozoites (in
P. vivax
).
The product of fusion of male and female gametocytes. It gives rise to oökinetes, oocysts, and then to sporozoites. All this occurs inside the stomach of the mosquito.
This page intentionally left blank
abracadabra
54
Anopheles messeae
44, 85, 174, 239
Abruzzo
255
Anopheles pharoensis
30, 44
Achilles
21
Anopheles plumbeus
44, 153
Acquarossa
150
Anopheles sacharovi
28, 35, 43–4, 74, 84,
Aedes aegypti
10, 44
Aedes albopictus
44, 89
Anopheles subalpinus
44, 90
Aetios of Amida
221
Anopheles superpictus
44, 90
Africa
2, 25, 27–31, 35–6, 39, 44, 83,
Anopheles typicus
239
86, 108, 117–18, 125, 130, 139, 144,
anophelism without malaria
43, 72,
156, 162, 164, 200, 202, 252, 283
Akragas (Agrigento)
38, 73
Antyllus
57, 61
Alaric
225, 276
Anxur (Terracina)
183
Alban Hills
78, 189, 243–4, 259
Anzio (Antium)
178, 188, 235
Albano, Lago di
77
Appia, Via
173, 181–2, 187–8, 190–1
Alcuin
130, 149, 157, 224, 262
Appian
188, 196, 241
Aldhelm, St.
232
Appius Claudius Caecus, censor
181
Alexander VI, pope
122
Apulia
105, 115, 214, 262–8
Alexander the Great
11
aqueducts
205
Alexander Jannaeus
133
Aquileia
79, 278
Alexander of Tralles
130
Arabia
29
alluviation
81, 85, 105–7, 111, 264
Archigenes
221
Altinum
79
Ardea
188, 236, 239, 249
altitude
57, 60, 72, 101, 107, 161, 189,
Argolid
32
Argyrippa
265
Altopáscio
260
Aristotle
200
Amazena, river
182
Arpi
264
Amerindians
34, 252
Artemisia
species
48
anaemia
15, 31, 126, 129, 141
Asclepiades of Bithynia
14, 117, 137,
ancient DNA
31–3, 68, 145, 232
Andersen, Hans Christian
174–6
Astura
257
Anguillara family
234
Anopheles atroparvus
33, 44, 68, 79, 84,