Homo Deus: A Brief History of Tomorrow (55 page)

BOOK: Homo Deus: A Brief History of Tomorrow
7.8Mb size Format: txt, pdf, ePub

Precisely because technology is now moving so fast, and parliaments and dictators alike are overwhelmed by data they cannot process quickly enough, present-day politicians are thinking on a far smaller scale than their predecessors a century ago. In the early twenty-first century, politics is consequently bereft of grand visions. Government has become mere administration. It manages the country, but it no longer leads it. It makes sure teachers are paid on time and sewage systems don’t overflow, but it has no idea where the country will be in twenty years.

To some extent, this is a very good thing. Given that some of the big political visions of the twentieth century led us to Auschwitz, Hiroshima and the Great Leap Forward, maybe we are better off in the hands of petty-minded bureaucrats. Mixing godlike technology with megalomaniac politics is a recipe for disaster. Many neo-liberal economists and political scientists argue that it is best to leave all the important decisions in the hands of the free market. They thereby give politicians the perfect excuse for inaction and ignorance, which are reinterpreted as profound wisdom. Politicians find it convenient to believe that the reason they don’t understand the world is that they need not understand it.

Yet mixing godlike technology with myopic politics also has its downside. Lack of vision isn’t always a blessing, and not all visions are necessarily bad. In the twentieth century, the dystopian Nazi vision did not fall apart spontaneously. It was defeated by the equally grand visions of socialism and liberalism. It is dangerous to trust our future to market forces, because these forces do what’s good for the market rather than what’s good for humankind or for the world. The hand of the market is blind as well as invisible, and left to its own devices it may fail to do anything about the threat of global warming or the dangerous potential of artificial intelligence.

Some people believe that there is somebody in charge after all. Not democratic politicians or autocratic despots, but rather a small coterie of billionaires who secretly run the world. But such conspiracy theories never work, because they underestimate the
complexity of the system. A few billionaires smoking cigars and drinking Scotch in some back room cannot possibly understand everything happening on the globe, let alone control it. Ruthless billionaires and small interest groups flourish in today’s chaotic world not because they read the map better than anyone else, but because they have very narrow aims. In a chaotic system, tunnel vision has its advantages, and the billionaires’ power is strictly proportional to their goals. If the world’s richest man would like to make another billion dollars he could easily game the system in order to achieve his goal. In contrast, if he would like to reduce global inequality or stop global warming, even he won’t be able to do it, because the system is far too complex.

Yet power vacuums seldom last long. If in the twenty-first century traditional political structures can no longer process the data fast enough to produce meaningful visions, then new and more efficient structures will evolve to take their place. These new structures may be very different from any previous political institutions, whether democratic or authoritarian. The only question is who will build and control these structures. If humankind is no longer up to the task, perhaps it might give somebody else a try.

History in a Nutshell

From a Dataist perspective, we may interpret the entire human species as a single data-processing system, with individual humans serving as its chips. If so, we can also understand the whole of history as a process of improving the efficiency of this system, through four basic methods:

1.  
Increasing the number of processors.
A city of 100,000 people has more computing power than a village of 1,000 people.

2.  
Increasing the variety of processors.
Different processors may use diverse ways to calculate and analyse data. Using several kinds of processors in a single system may therefore
increase its dynamism and creativity. A conversation between a peasant, a priest and a physician may produce novel ideas that would never emerge from a conversation between three hunter-gatherers.

3.  
Increasing the number of connections between processors.
There is little point in increasing the mere number and variety of processors if they are poorly connected to each other. A trade network linking ten cities is likely to result in many more economic, technological and social innovations than ten isolated cities.

4.  
Increasing the freedom of movement along existing connections.
Connecting processors is hardly useful if data cannot flow freely. Just building roads between ten cities won’t be very useful if they are plagued by robbers, or if some autocratic despot doesn’t allow merchants and travellers to move as they wish.

These four methods often contradict one another. The greater the number and variety of processors, the harder it is to freely connect them. The construction of the Sapiens data-processing system accordingly passed through four main stages, each characterised by an emphasis on different methods.

The first stage began with the Cognitive Revolution, which made it possible to connect unlimited numbers of Sapiens into a single data-processing network. This gave Sapiens a crucial advantage over all other human and animal species. While there is a strict limit to the number of Neanderthals, chimpanzees or elephants you can connect to the same net, there is no limit to the number of Sapiens.

Sapiens used their advantage in data processing to overrun the entire world. However, as they spread into different lands and climates they lost touch with one another, and underwent diverse cultural transformations. The result was an immense variety of human cultures, each with its own lifestyle, behaviour patterns and world view. Hence the first phase of history involved an increase in the number and variety of human processors, at the expense of
connectivity: 20,000 years ago there were many more Sapiens than 70,000 years ago, and Sapiens in Europe processed information differently to Sapiens in China. However, there were no connections between people in Europe and China, and it would have seemed utterly impossible that all Sapiens may one day be part of a single data-processing web.

The second stage began with the Agricultural Revolution and continued until the invention of writing and money about 5,000 years ago. Agriculture speeded demographic growth, so the number of human processors rose sharply. Simultaneously, agriculture enabled many more people to live together in the same place, thereby generating dense local networks that contained an unprecedented number of processors. In addition, agriculture created new incentives and opportunities for different networks to trade and communicate with one another. Nevertheless, during the second phase centrifugal forces remained predominant. In the absence of writing and money, humans could not establish cities, kingdoms or empires. Humankind was still divided into innumerable little tribes, each with its own lifestyle and world view. Uniting the whole of humankind was not even a fantasy.

The third stage kicked off with the invention of writing and money about 5,000 years ago, and lasted until the beginning of the Scientific Revolution. Thanks to writing and money, the gravitational field of human cooperation finally overpowered the centrifugal forces. Human groups bonded and merged to form cities and kingdoms. Political and commercial links between different cities and kingdoms also tightened. At least since the first millennium
BC
– when coinage, empires and universal religions appeared – humans began to consciously dream about forging a single network that would encompass the entire globe.

This dream became a reality during the fourth and last stage of history, which began around 1492. Early modern explorers, conquerors and traders wove the first thin threads that encompassed the whole world. In the late modern period these threads were
made stronger and denser, so that the spider’s web of Columbus’s days became the steel and asphalt grid of the twenty-first century. Even more importantly, information was allowed to flow increasingly freely along this global grid. When Columbus first hooked up the Eurasian net to the American net, only a few bits of data could cross the ocean each year, running the gauntlet of cultural prejudices, strict censorship and political repression. But as the years went by, the free market, the scientific community, the rule of law and the spread of democracy all helped to lift the barriers. We often imagine that democracy and the free market won because they were ‘good’. In truth, they won because they improved the global data-processing system.

So over the last 70,000 years humankind first spread out, then separated into distinct groups, and finally merged again. Yet the process of unification did not take us back to the beginning. When the different human groups fused into the global village of today, each brought along its unique legacy of thoughts, tools and behaviours, which it collected and developed along the way. Our modern larders are now stuffed with Middle Eastern wheat, Andean potatoes, New Guinean sugar and Ethiopian coffee. Similarly, our language, religion, music and politics are replete with heirlooms from across the planet.
5

If humankind is indeed a single data-processing system, what is its output? Dataists would say that its output will be the creation of a new and even more efficient data-processing system, called the Internet-of-All-Things. Once this mission is accomplished,
Homo sapiens
will vanish.

Information Wants to be Free

Like capitalism, Dataism too began as a neutral scientific theory, but is now mutating into a religion that claims to determine right and wrong. The supreme value of this new religion is ‘information flow’. If life is the movement of information, and if we think that life is good, it follows that we should extend, deepen and spread the
flow of information in the universe. According to Dataism, human experiences are not sacred and
Homo sapiens
isn’t the apex of creation or a precursor of some future
Homo deus
. Humans are merely tools for creating the Internet-of-All-Things, which may eventually spread out from planet Earth to cover the whole galaxy and even the whole universe. This cosmic data-processing system would be like God. It will be everywhere and will control everything, and humans are destined to merge into it.

This vision is reminiscent of some traditional religious visions. Thus Hindus believe that humans can and should merge into the universal soul of the cosmos – the atman. Christians believe that after death saints are filled by the infinite grace of God, whereas sinners cut themselves off from His presence. Indeed, in Silicon Valley the Dataist prophets consciously use traditional messianic language. For example, Ray Kurzweil’s book of prophecies is called
The Singularity is Near
, echoing John the Baptist’s cry: ‘the kingdom of heaven is near’ (Matthew 3:2).

Dataists explain to those who still worship flesh-and-blood mortals that they are overly attached to outdated technology.
Homo sapiens
is an obsolete algorithm. After all, what’s the advantage of humans over chickens? Only that in humans information flows in much more complex patterns than in chickens. Humans absorb more data, and process it using better algorithms. (In day-to-day language that means that humans allegedly have deeper emotions and superior intellectual abilities. But remember that according to current biological dogma, emotions and intelligence are just algorithms.) Well then, if we could create a data-processing system that absorbs even more data than a human being, and that processes it even more efficiently, wouldn’t that system be superior to a human in exactly the same way that a human is superior to a chicken?

Dataism isn’t limited to idle prophecies. Like every religion, it has its practical commandments. First and foremost, a Dataist ought to maximise data flow by connecting to more and more media, and producing and consuming more and more information. Like other successful religions, Dataism is also missionary.
Its second commandment is to connect everything to the system, including heretics who don’t want to be connected. And ‘everything’ means more than just humans. It means every
thing
. My body, of course, but also the cars on the street, the refrigerators in the kitchen, the chickens in their coop and the trees in the jungle – all should be connected to the Internet-of-All-Things. The refrigerator will monitor the number of eggs in the drawer, and inform the chicken coop when a new shipment is needed. The cars will talk with one another, and the trees in the jungle will report on the weather and on carbon dioxide levels. We mustn’t leave any part of the universe disconnected from the great web of life. Conversely, the greatest sin is to block the data flow. What is death, if not a situation when information doesn’t flow? Hence Dataism upholds the freedom of information as the greatest good of all.

People rarely manage to come up with a completely new value. The last time this happened was in the eighteenth century, when the humanist revolution preached the stirring ideals of human liberty, human equality and human fraternity. Since 1789, despite numerous wars, revolutions and upheavals, humans have not managed to come up with any new value. All subsequent conflicts and struggles have been conducted either in the name of the three humanist values, or in the name of even older values such as obeying God or serving the nation. Dataism is the first movement since 1789 that created a really novel value: freedom of information.

We mustn’t confuse freedom of information with the old liberal ideal of freedom of expression. Freedom of expression was given to humans, and protected their right to think and say what they wished – including their right to keep their mouths shut and their thoughts to themselves. Freedom of information, in contrast, is not given to humans. It is given to
information
. Moreover, this novel value may impinge on the traditional freedom of expression, by privileging the right of information to circulate freely over the right of humans to own data and to restrict its movement.

Other books

His Forbidden Princess by Jeannie Moon
Girl with a Monkey by Thea Astley
Bought and Trained by Emily Tilton
Lose Control by Donina Lynn
The Ragnarok Conspiracy by Erec Stebbins
The Risen by Ron Rash
The Colour of Magic by Terry Pratchett
The Butterfly Garden by Dot Hutchison