Introducción a la ciencia II. Ciencias Biológicas (13 page)

BOOK: Introducción a la ciencia II. Ciencias Biológicas
7.96Mb size Format: txt, pdf, ePub
ads

Ésta es la condensación más simple posible. En 1907, Fischer había sintetizado una cadena constituida por 18 aminoácidos, 15 de ellos de glicina y los restantes 3 de leucina. Esta molécula no mostraba ninguna dé las propiedades características de las proteínas, pero Fischer supuso que esto se debía a que la cadena no era lo suficientemente larga. Denominó a sus cadenas sintéticas «péptidos», utilizando la palabra griega que significa «digestión», debido a que creyó que las proteínas se fragmentaban en tales grupos cuando eran digeridas. Fischer designó a la combinación del carbón del carboxilo con el grupo amino un «enlace peptídico».

En el año 1932, el bioquímico alemán Max Bergmann (discípulo de Fischer) ideó un método para sintetizar péptidos a partir de diversos aminoácidos. Utilizando el método de Bergmann, el bioquímico polaco-americano Joseph Stewart Fruton preparó péptidos que pudo degradar en fragmentos más pequeños mediante jugos digestivos. Desde entonces existió una buena razón para suponer que los jugos digestivos hidrolizaban (es decir, escindían por adición de agua) sólo un tipo de enlace molecular, significando esto que el enlace entre los aminoácidos, en los péptidos sintéticos, debía de ser de la misma clase que el que une a los aminoácidos en las proteínas verdaderas. Esta demostración disipó cualquier duda existente sobre la validez de la teoría peptídica de Fischer acerca de la estructura de las proteínas.

No obstante, los péptidos sintéticos eran de dimensiones muy reducidas y no mostraban ninguna de las propiedades de las proteínas. Como ya he dicho anteriormente, Fischer había sintetizado uno que consistía de 18 aminoácidos; en 1916, el químico suizo Emil Abderhalden lo aventajó en un punto, al preparar un péptido con 19 aminoácidos, conservando con ello el «récord» durante treinta años. Por lo demás, los químicos se percataron de que un péptido de estas características debía de ser un pequeño fragmento, cuando se comparaba con el tamaño de una molécula proteica, puesto que los pesos moleculares de las proteínas eran enormes.

Consideremos, por ejemplo, la hemoglobina, una proteína de la sangre. La hemoglobina contiene hierro, que representa exactamente el 0,34 % del peso de la molécula. Los datos químicos disponibles indican que la molécula de hemoglobina contiene 4 átomos de hierro, motivo por el cual el peso molecular total deberá ser aproximadamente de 67.000; 4 átomos de hierro, con un peso total de 4
´
55,85, deberán constituir el 0,34 % de dicho peso molecular. En consecuencia, la hemoglobina deberá con tener unos 550 aminoácidos (el peso molecular medio de los aminoácidos es de, aproximadamente, 120). Compárese esta cifra con la de 19 en el péptido sintetizado por Abderhalden. Y la hemoglobina es solamente una proteína de tamaño mediano.

La medición más exacta de los pesos moleculares de las proteínas se ha logrado sometiéndolas a la acción de una centrifugadora, aparato que al girar impulsa hacia el exterior a las partículas, debido a la fuerza centrífuga. Cuando dicha fuerza sea más intensa que la de la gravedad terrestre, las partículas suspendidas en un líquido sedimentarán, separándose del centro a mayor velocidad que aquella con la que sedimentarían a consecuencia de la gravedad. Por ejemplo, los glóbulos rojos de la sangre sedimentarán rápidamente en una centrifugadora de este tipo, y la leche fresca se separará en dos fracciones: la nata y la leche desnatada, más densa. Estos tipos de separación tienen lugar lentamente bajo las fuerzas gravitatorias ordinarias, pero la centrifugación las acelera (fig. 12.1).

Fig. 12.1. Principio de la centrifugadora.

Las moléculas proteicas, aún cuando tienen gran tamaño, no son lo suficientemente pesadas para sedimentar, a partir de una solución, por la simple acción de la gravedad; ni tampoco sedimentan con rapidez en una centrifugadora ordinaria. Pero, en los años veinte de este siglo, el químico sueco Theodor Svedberg desarrolló una «ultracentrifugadora» capaz de separar a las moléculas según su peso. Este aparato, de gran velocidad, gira a más de 10.000 rps y produce fuerzas centrífugas hasta 900.000 veces más intensas que la fuerza gravitatoria que actúa sobre la superficie de la Tierra. Por sus contribuciones al estudio de las suspensiones, Svedberg recibió en 1926 el premio Nobel de Química.

Con la ultracentrifugadora, los químicos fueron capaces de determinar los pesos moleculares de una serie de proteínas a partir de su velocidad de sedimentación (medida en «Svedbergs» en honor de aquel químico). Las proteínas pequeñas mostraron tener pesos moleculares de sólo unos pocos millares y contener quizás a lo sumo 50 aminoácidos (por supuesto, bastante más que 19). Otras proteínas tenían pesos moleculares de cientos de miles y aún de millones, lo que significaba que debían consistir de miles a decenas de millares de aminoácidos. El poseer moléculas de tan grandes dimensiones situó a las proteínas en una clase de sustancias que sólo habían sido estudiadas sistemáticamente a partir de mediados del siglo XIX.

El químico escocés Thomas Graham fue el pionero en este campo, debido a su interés en la «difusión», es decir, en la forma en que se entremezclan las moléculas de dos sustancias puestas en contacto. Inició sus investigaciones con el estudio de la velocidad de difusión de los gases a través de pequeños orificios o tubos delgados. Hacia 1831, fue capaz de demostrar que la velocidad de difusión de un gas era inversamente proporcional a la raíz cuadrada de su peso molecular («Ley de Graham»). (Precisamente por el fenómeno definido por la ley de Graham pudo ser separado el uranio 235 del uranio 238.) En las décadas que siguieron, Graham pasó a estudiar la difusión de las sustancias disueltas. Halló que soluciones de compuestos tales como la sal, el azúcar o el sulfato de cobre, llegaban a atravesar un grueso pergamino (y que se podían obtener fácilmente en forma cristalina). A aquellas sustancias que no lo hacían, tales como la cola (en griego «cola»), las denominó «coloides». El estudio de las moléculas (o agregados gigantes de átomos, aún cuando no formen moléculas aisladas) llegó a ser conocido con el término de «coloidoquímica». Puesto que las proteínas y otras moléculas clave en los tejidos vivos poseen unas dimensiones enormes, la coloidoquímica tiene una importancia particular para la «Bioquímica» (el estudio de las reacciones químicas que tienen lugar en los tejidos vivos).

Existen una serie de métodos que hacen uso provechoso de las dimensiones gigantes de las moléculas proteicas. Supongamos que el agua pura está situada a un lado de un pergamino y que existe en el otro una solución coloidal de proteína. Las moléculas proteicas no podrán atravesar la membrana; además, evitarán el paso de algunas de las moléculas del agua donde se hallan suspendidas, que de otra forma podrían atravesarla. Por este motivo, el agua penetrará más fácilmente en el interior de la parte coloidal del sistema, que saldrá de él. Ascenderá el nivel del líquido en el lado de la solución proteica y creará una «presión osmótica».

En 1877, el botánico alemán Wilhelm Pfeffer mostró cómo podía medirse esta presión osmótica y determinar, a partir de ella, el peso de una molécula gigante. Éste fue el primer método suficientemente sensible para estimar las dimensiones de tales moléculas.

Por otra parte, las soluciones proteicas podrían situarse en sacos formados por «membranas semipermeables» (membranas con poros lo bastante grandes como para permitir el paso de las moléculas pequeñas, pero no el de las grandes). Si éstos se sumergieran en agua corriente, las moléculas pequeñas y los iones atravesarían la membrana y serían lavados, mientras que la molécula proteica de grandes dimensiones permanecería retenida. Este procedimiento de «diálisis» es el método más sencillo para purificar las soluciones proteicas.

Las moléculas de tamaño coloidal son lo suficientemente grandes como para difractar la luz; las moléculas pequeñas no lo hacen. Además, la luz de pequeña longitud de onda es difractada con mayor intensidad que aquella de longitud de onda mayor. El primero en observar este efecto, en 1869, fue el físico irlandés John Tyndall; en consecuencia, se lo denomina «efecto Tyndall». El color azul del cielo se explica ahora por el efecto de la difracción de las partículas de polvo sobre la luz solar de onda corta. En el ocaso, cuando la luz atraviesa un mayor espesor de la atmósfera, con un contenido de polvo particularmente elevado debido a la actividad del día, se dispersa suficiente cantidad de luz como para permitir sólo la aparición de los colores rojo y naranja, dando lugar así a la maravillosa tonalidad rubí de las puestas de sol.

La luz que pasa a través de una solución coloidal es difractada de tal forma que puede apreciarse un cono visible de ella cuando se observa desde un lado. Las soluciones de sustancias cristaloides no dan lugar a tal cono visible de luz, cuando se iluminan y son «ópticamente limpias». En 1902, el químico austro-alemán Richard Adolf Zsigmondy aprovechó esta observación para idear un «ultramicroscopio», mediante el cual, cuando se observa una solución coloidal bajo ángulos rectos, las partículas individuales (demasiado pequeñas para ser vistas con el microscopio ordinario) aparecen como puntos dotados de una brillante luminosidad. Por este descubrimiento le fue otorgado en 1925 el premio Nobel de Química.

Los químicos dedicados al estudio de las proteínas estaban naturalmente interesados en sintetizar cadenas «polipéptidas» largas, con la esperanza de obtener así proteínas. Pero los métodos de Fischer y Bergmann permitían sólo la adición de un aminoácido cada vez: un procedimiento de escaso interés práctico. Lo que se precisaba era un método que determinara la unión de aminoácidos, cual si se tratara de una reacción en cadena, tal como la que Baekeland había usado para obtener plásticos muy polimerizados. En 1947, el químico israelí E. Katchalski y el químico de Harvard, Robert Woodward (que había sintetizado la quinina) comunicaron haber logrado producir polipéptidos mediante una reacción de polimerización en cadena. Su material de partida era un aminoácido ligeramente modificado. (Dicha modificación se autoeliminaba totalmente durante la reacción.) Desde entonces obtuvieron polipéptidos sintéticos con incluso 100 o aún 1.000 aminoácidos.

Estas cadenas están generalmente constituidas por una sola clase de aminoácidos, tal como la glicina o la tirosina, y, por lo tanto, se denominan «poliglicina» o «politirosina». También es posible, cuando el material de partida es una mezcla de dos aminoácidos modificados, formar un polipéptido que contenga dos aminoácidos distintos en la cadena. Pero estos productos sintéticos se asemejan sólo a la clase más sencilla de proteínas: por ejemplo la «fibroína», es decir, la proteína que se encuentra en la seda.

Las cadenas polipéptidas

Algunas proteínas son fibrosas y cristalinas como la celulosa o el nilón. Ejemplos de ello son la fibroína; la queratina, la proteína en el pelo y la piel; y el colágeno, la proteína en los tendones y en el tejido conjuntivo. El físico alemán R. O. Herzog demostró la capacidad de cristalizarse que tenían estas sustancias, al poner de manifiesto que difractaban los rayos X. Otro físico alemán, R. Brill, analizó la imagen obtenida por difracción y determinó la distancia entre los átomos en la cadena polipéptida. En los años treinta de este siglo, el bioquímico británico William Thomas Astbury y otros obtuvieron más datos sobre la estructura de la cadena mediante la difracción de los rayos X. Pudieron calcular con razonable precisión las distancias entre los átomos adyacentes, así como los ángulos formados por enlaces que los unen. De este modo apreciaron que la cadena de fibroína se hallaba totalmente extendida: es decir, los átomos se disponían a lo largo de una línea tan recta como lo permitían los ángulos formados por los enlaces entre sí.

Esta disposición de la cadena polipéptida totalmente extendida es la más simple posible. Se la denomina «configuración beta». Cuando se distiende un cabello, sus moléculas de queratina, al igual que las de fibroína, adoptan esta configuración. (Si el cabello está mojado, puede ser distendido hasta 3 veces su longitud original.) Pero en su estado ordinario, no distendido, la queratina muestra una disposición más complicada, denominada «configuración alfa».

En 1951, Linus Pauling y Robert Brainard Corey, del Instituto de Tecnología de California, sugirieron que, en la configuración alfa, las cadenas polipéptidas seguían una trayectoria helicoidal (similar a la de una escalera de caracol). Después de construir varios modelos, al objeto de apreciar cómo podría ser la estructura si todos los enlaces entre los átomos se hallaran en sus direcciones naturales, sin estar sometidos a ninguna tensión, llegaron a la conclusión que cada vuelta de la hélice debería tener la longitud de 3,6 aminoácidos, o sea 5,4 unidades Ångström.

¿Qué es lo que hace posible que una hélice conserve su estructura? Pauling sugirió que el agente responsable es el denominado «enlace de hidrógeno». Como hemos visto, cuando un átomo de hidrógeno se halla unido a un átomo de oxígeno o a uno de nitrógeno, cualquiera de estos últimos retiene a los electrones de enlace compartidos, de tal modo que el átomo de hidrógeno adquiere una ligera carga positiva y el oxígeno o el nitrógeno una débil carga negativa. En la hélice, al parecer, periódicamente un átomo de hidrógeno se halla en las proximidades de un átomo de oxígeno o de nitrógeno en la vuelta de la hélice inmediatamente por encima o debajo de él. El átomo de hidrógeno ligeramente positivo es atraído por su vecino ligeramente negativo. Esta atracción tiene una fuerza veinte veces menor que la de un enlace químico ordinario, pero es lo suficientemente intensa como para que la hélice conserve su estructura. Sin embargo, al estirar la fibra, la hélice se desenrollará fácilmente, por lo que dicha fibra se distenderá.

BOOK: Introducción a la ciencia II. Ciencias Biológicas
7.96Mb size Format: txt, pdf, ePub
ads

Other books

Captive Soul by Anna Windsor
Infection Z (Book 5) by Casey, Ryan
Hawke: A Novel by Ted Bell
Sizzle by Holly S. Roberts
Fire and Rain by Lowell, Elizabeth
Midwinter Nightingale by Aiken, Joan
The Last Days of Video by Jeremy Hawkins
The Devil in Amber by Mark Gatiss