La partícula divina (6 page)

Read La partícula divina Online

Authors: Dick Teresi Leon M. Lederman

Tags: #Divulgación científica

BOOK: La partícula divina
6.24Mb size Format: txt, pdf, ePub

Cuando uno se adentra en los terrenos se cruza con la estructura más prominente del lugar. El Wilson Hall, el edificio de dieciséis plantas del laboratorio central del Fermilab, se eleva de un suelo de lo más llano, un poco como unas manos orantes dibujadas por Durero. El edificio está inspirado en una catedral francesa que Wilson visitó, la de Beauvais, empezada en el año 1225. La catedral de Beauvais tiene dos torres separadas por un presbiterio. El Wilson Hall, concluido en 1972, consta de dos torres gemelas (las dos manos en oración) unidas por galerías a distintas alturas y uno de los mayores atrios del mundo. El rascacielos tiene a la entrada un estaque donde se refleja, con un alto obelisco en uno de sus extremos. El obelisco, con el que terminaron las contribuciones artísticas de Wilson al laboratorio, se conoce como la
Última Construcción de Wilson
.

El Wilson Hall roza la
raison d'étre
del laboratorio: el acelerador de partículas. Enterrado unos nueve metros bajo la pradera, un tubo de acero inoxidable de unos pocos centímetros de diámetro describe un círculo de alrededor de seis kilómetros y medio de longitud a través de un millar de imanes superconductores que guían a los protones por un camino circular. El acelerador se llena de colisiones y de calor. Los protones corren por este anillo a velocidades cercanas a la de la luz hasta aniquilarse al chocar frontalmente contra sus hermanos los antiprotones. Estas colisiones generan momentáneamente temperaturas de unos diez mil billones (10
16
) de grados sobre el cero absoluto, muchísimo mayores que las del núcleo del Sol o la furiosa explosión de una supernova. Los científicos tienen aquí más derecho a llamarse viajeros del tiempo que esos que vemos en las películas de ciencia ficción. La última vez que semejantes temperaturas fueron «naturales» había pasado sólo una ínfima fracción de segundo tras el big bang, el nacimiento del universo.

Aunque es subterráneo, cabe discernir fácilmente el acelerador desde arriba gracias al talud de tierra de unos seis metros de altura que se alza en el suelo por encina del anillo. (Imaginad una rosquilla muy fina de más de seis kilómetros de circunferencia.) Mucha gente supone que el propósito del talud es absorber la radiación del acelerador, pero si existe es, en realidad, porque Wilson era un tipo inclinado a la estética. Una vez terminada la construcción del acelerador se quedó muy frustrado porque no podía distinguir dónde estaba. Así que cuando los trabajadores cavaron los hoyos de los estanques de refrigeración dispuestos alrededor del acelerador, hizo que apilasen la tierra de modo que formara ese inmenso círculo. Para resaltarlo, construyó un canal de unos tres metros de ancho que lo rodea e instaló unas bombas móviles que lanzan surtidores de agua al aire. El canal, además de su efecto visual, tiene una función: lleva el agua refrigerante del acelerador. Es extraña la belleza del conjunto. En las fotos de satélites tomadas a unos 500 kilómetros sobre el suelo, el talud y el canal —que desde esa altura parecen un círculo perfecto— son la característica más nítida del paisaje del norte de Illinois.

Las 267 hectareas de tierra, más de dos kilómetros y medio cuadrados que encierra el anillo del acelerador, albergan una curiosa recuperación del pasado. El laboratorio está restaurando la pradera dentro del anillo. Se ha replantado buena parte de la hierba alta de la pradera original, casi extinguida por las hierbas europeas durante los últimos doscientos años, gracias a varios cientos de voluntarios que han ido recogiendo semillas de los restos de pradera que quedan en el área de Chicago. Cisnes trompeteros y gansos y grullas canadienses viven en las lagunas someras que salpican el interior del anillo.

Al otro lado de la carretera, al norte del anillo principal, hay otro proyecto de restauración: un pasto donde rumia una manada de cien búfalos. La manada se compone de animales traídos de Colorado y Dakota del Sur y de unos pocos de la propia Illinois, si bien los búfalos no han medrado en el área de Batavia desde hace ochocientos años. Antes de esa fecha abundaban las manadas donde hoy rumian los físicos. Los arqueólogos nos dicen que la caza del búfalo sobre los terrenos que ahora ocupa el Fermilab se remonta a hace nueve mil años, como demuestra la cantidad de cabezas de flecha encontradas en la región. Parece que una tribu de norteamericanos nativos, que vivía junto al cercano río Fox, envió durante siglos a sus cazadores a lo que ahora es el Fermilab; acampaban allí, cazaban sus piezas y volvían con ellas al asentamiento del río.

Hay a quienes los búfalos de hoy les dejan un tanto preocupados. Una vez, mientras yo promovía el laboratorio en el programa de Phil Donahue, una señora que vivía cerca de la instalación telefoneó. «El doctor Lederman hace que el laboratorio parezca bastante inofensivo —se quejaba—. Si es así, ¿por qué tienen todos esos búfalos? Todos sabemos que son sumamente sensibles al material radiactivo.» Creía que los búfalos eran como los canarios de las minas, sólo que preparados para detectar radiactividad en vez de gas. Me imagino que se figuraba que yo no le quitaba ojo a la manada desde mi oficina del rascacielos, listo para salir corriendo hacia el aparcamiento en cuanto uno hincase la rodilla. La verdad es que los búfalos, búfalos son. Un contador Geiger es un detector de radiactividad mucho mejor y no come tanta hierba.

Conducid hacia el este por Pine Street, alejándoos del Wilson Hall, y llegaréis a varias instalaciones importantes más, entre ellas la del detector del colisionador (el CDF), que se ha diseñado para sacar el mayor partido de nuestros descubrimientos de la materia, y el recientemente construido Centro de Ordenadores Richard P. Feynman, cuyo nombre le viene del gran teórico del Cal Tech que murió hace sólo unos pocos años. Seguid conduciendo; acabaréis llegando a Eola Road. Girad a la derecha y tirad adelante durante un kilómetro y pico o así, y veréis a la izquierda una casa de campo de hace ciento cincuenta años. Ahí viví yo mientras fui el director: en el 137 de Eola Road. No son las señas oficiales. Es sólo el número que decidí ponerle a la casa.

Fue Richard Feynman, precisamente, quien sugirió que todos los físicos pusiesen un cartel en sus despachos o en sus casas que les recordara cuánto es lo que no sabemos. En el cartel no pondría nada más que esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de
constante de estructura fina
. Este número guarda relación con la probabilidad de que un electrón emita o absorba un fotón. La constante de estructura fina responde también al nombre de alfa, y sale de dividir el cuadrado de la carga del electrón por el producto de la velocidad de la luz y la constante de Planck. Tanta palabra no significa otra cosa sino que ese solo número, 137, encierra los meollos del electromagnetismo (el electrón), la relatividad (la velocidad de la luz) y la teoría cuántica (la constante de Planck). Menos perturbador sería que la relación entre todos estos importantes conceptos hubiera resultado ser un uno o un tres o quizás un múltiplo de pi. Pero ¿137?

Lo más notable de este notable número es su adimensionalidad. La velocidad de la luz es de unos 300.000 kilómetros por segundo. Abraham Lincoln medía 1,98 metros. La mayoría de los números vienen con dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa, ¡se borran todas las unidades! El 137 está solo: se exhibe desnudo a donde va. Esto quiere decir que a los científicos de Marte, o a los del decimocuarto planeta de la estrella Sirio, aunque usen Dios sabe qué unidades para la carga y la velocidad y qué versión de la constante de Planck, también les saldrá 137. Es un número puro.

Los físicos se han devanado los sesos con el 137 durante los últimos cincuenta años. Werner Heisenberg proclamó una vez que todas las fuentes de perplejidad que hay en la mecánica cuántica se secarían en cuanto el 137 se explicase definitivamente. Les digo a mis alumnos de carrera que, si alguna vez se encuentran en un aprieto en una gran ciudad de cualquier parte del mundo, escriban «137» en un cartel y lo levanten en la esquina de unas calles concurridas. Al final, un físico acabará por ver que están en apuros y vendrá en su ayuda. (Que yo sepa, nadie ha puesto esto en práctica, pero debería funcionar.)

Una de las historias maravillosas (pero no verificadas) que en el mundillo de la física se cuentan destaca la importancia del 137 y a la vez ilustra la arrogancia de los teóricos. Según este cuento, un notable físico matemático austriaco, y suizo por elección, Wolfgang Pauli, fue, se nos asegura, al cielo, y, por su eminencia como físico, se le concedió una audiencia con Dios.

Pauli, se te permite una pregunta. ¿Qué quieres saber?

Pauli hizo inmediatamente la pregunta que en vano se había esforzado en responder durante los últimos diez años de su vida: «¿Por qué es alfa igual a uno partido por ciento treinta y siete?».

Dios sonrió, cogió la tiza y se puso a escribir ecuaciones en la pizarra. Tras unos cuantos minutos, Él se volvió a Pauli, que hacía aspavientos. «Das ist falsch!» [¡Eso es un cuento chino!]

También se cuenta una historia verdadera —una historia verificable— que pasó aquí en la Tierra. Lo cierto es que a Pauli le obsesionaba el 137, y se tiró incontables horas ponderando su significado. Cuando su asistente le visitó en la habitación del hospital donde se le ingresó para la operación que le sería fatal, el teórico le pidió que se fijara cuando saliese en el número de la puerta. Era el 137. Ahí vivía yo: en el 137 de Eola Road.

Tarde por la noche con Lederman

Una noche, un fin de semana —volvía a casa tras una cena en Batavia—, conduje por los terrenos del laboratorio. En la Eola Road hay varios sitios desde los que se puede ver el edificio central elevándose en el cielo de la pradera. El domingo, a las once y media de la noche, el Wilson Hall da testimonio de lo intenso que es el sentimiento que mueve a los físicos a desvelar los misterios aún no resueltos del universo. Había luces encendidas arriba y abajo por los dieciséis pisos de las torres gemelas, cada uno con su cupo de investigadores de ojos cansados en pos de eliminar las pegas de sus impenetrables teorías sobre la materia y la energía. Por fortuna, pude volver a casa y meterme en la cama. Como director del laboratorio, mis obligaciones del turno de noche se habían reducido drásticamente. Podía dormir y dejar los problemas para la mañana siguiente en vez de pasarme la noche trabajando en ellos. Me sentía feliz esa noche por dormir en una cama de verdad en vez de tirado en el suelo del acelerador, a la espera de que salieran los datos. Sin embargo, no paraba de dar vueltas, preocupado con los quarks, con Gina, con los leptones, con Sophia… Finalmente, me puse a contar ovejas para sacarme la física de la cabeza: «… 134, 135, 136, 137…».

De pronto salté de la cama; una sensación de urgencia me empujaba fuera de casa. Saqué la bicicleta del granero, y —en pijama todavía, cayéndoseme las medallas de las solapas mientras pedaleaba— avancé con penosa lentitud hacia el edificio del detector del colisionador. Fue frustrante. Sabía que tenía que atender a un negocio muy importante, pero es que no podía hacer que la bicicleta se moviera más deprisa. Entonces me acordé de lo que me había dicho un psicólogo hacía poco: que hay un tipo de sueño, al que llaman lúcido, en el que quien sueña sabe que sueña. Y en cuanto lo sabes, me dijo el psicólogo, puedes hacer, dentro del sueño, lo que quieras. El primer paso es dar con una pista de que no estás en la vida real sino soñando. Fue fácil. Sabía condenadamente bien que era un sueño por la cursiva. Odio la cursiva. Cuesta demasiado leerla. Tomé el control de mi sueño. «¡Fuera la cursiva!», grité.

Vale. Esto está mejor. Puse el plato grande y pedaleé a la velocidad de la luz (uno puede hacer cualquier cosa en un sueño, ¿no?) hacia el CDF. Ay, demasiado deprisa: había dado ocho vueltas a la Tierra y vuelto a casa. Cambié a un plato más pequeño y pedaleé a doscientos agradables kilómetros por hora hacia el edificio. Hasta las tres de la mañana el aparcamiento estaba muy lleno; en los laboratorios de aceleradores los protones no paran cuando se hace de noche.

Silbando una cancioncilla fantasmal entré en el edificio del detector. El CDF es una especie de hangar industrial, donde todo está pintado de azul y naranja brillante. Las oficinas y las salas de ordenadores y de control están a lo largo de una de las paredes; el resto del edificio es un espacio abierto, concebido para albergar el detector, un instrumento de tres pisos de alto y 500.000 toneladas de peso. A unos doscientos físicos y el mismo número de ingenieros les llevó más de ocho años montar este particular reloj suizo de 500.000 arrobas. El detector es polícromo, de diseño radial: sus componentes se extienden simétricamente a partir de un pequeño agujero en el centro. El detector es la joya de la corona del laboratorio. Sin él, no podríamos «ver» qué pasa en el tubo del acelerador, ni qué atraviesa el centro del núcleo del detector. Lo que pasa es que, en el puro centro del detector, se producen las colisiones frontales de los protones y los antiprotones. Las piezas radiales de los elementos del detector vienen más o menos a concordar con el surtidor radial de los cientos de partículas que se producen en la colisión.

El detector se mueve por unos raíles gracias a los cuales puede sacarse este enorme aparato del túnel del acelerador al piso de ensamblaje para su mantenimiento periódico. Solemos programarlo para los meses de verano, cuando las tarifas eléctricas son más altas (si el recibo de la luz pasa de los diez millones de dólares al año, uno hace lo que puede para recortar los costes). Esa noche el detector estaba conectado. Se le había devuelto al túnel, y el pasadizo hacia la sala de mantenimiento estaba sellado con una puerta de acero de tres metros de grueso que bloquea la radiación. El acelerador se ha diseñado de tal forma que los protones y los antiprotones choquen (en su mayoría) en la sección del conducto que pasa por el detector (la «región de colisión»). La tarea del detector, claro está, es detectar y catalogar los productos de las colisiones frontales entre los protones y los p-barra (los antiprotones).

Other books

The Collectibles by James J. Kaufman
Krabat y el molino del Diablo by Otfried Preussler
Lemonade Sky by Jean Ure
Dear Infidel by Tamim Sadikali
Dark Metropolis by Jaclyn Dolamore
Taminy by Bohnhoff, Maya Kaathryn
Viva Vermont! by Melody Carlson
The Saint Sees It Through by Leslie Charteris