La teoría de la gravedad de Einstein fue también más allá que la de Newton; abarcaba la dinámica del universo (Newton creía en un universo estático) y su expansión a partir de un cataclismo inicial. Pero cuando se dirigen las ecuaciones de Einstein al universo newtoniano, dan resultados newtonianos.
Pues ya tenemos todo el pastel, ¿no? ¡No!
Todavía teníamos que mirar en el átomo, y cuando lo hicimos, nos hicieron falta conceptos que iban mucho más allá de Newton (y que fueron inaceptables para Einstein), que extendieron el mundo hasta el átomo, el núcleo y, por lo que sabemos, aún más allá. (¿Dentro?) Nos hacía falta la física cuántica. Otra vez, nada había en la revolución cuántica que retirase a Arquímedes, pusiese en almoneda a Galileo, empalase a Newton o bajase de su pedestal a la relatividad de Einstein. En vez de eso, se había vislumbrado un nuevo dominio, se habían encontrado nuevos fenómenos. Se vio que la ciencia de Newton era inadecuada, y al llegar el momento se descubrió una nueva síntesis.
Recordad que en el capítulo 5 dijimos que la ecuación de Schrödinger se creó para los electrones y otras partículas, pero que al aplicarla a las pelotas de béisbol y a otros objetos grandes se transforma ante nuestros ojos en la
F = ma
de Newton, o casi. La ecuación de Dirac, la que predijo la antimateria, fue un «refinamiento» de la ecuación de Schrödinger, concebida para tratar los electrones «rápidos» que se muevan a una fracción considerable de la velocidad de la luz. Sin embargo, cuando la ecuación de Dirac se aplica a los electrones que se mueven despacio, sale… la ecuación de Schrödinger, sólo que mágicamente revisada de forma que incluye el espín del electrón. Pero ¿arrumbar a Newton? En absoluto.
Si esta marcha del progreso suena maravillosamente eficiente, merece la pena señalar que genera también una buena cantidad de desechos. Cuando abrimos nuevas áreas a la observación con nuestras invenciones y nuestra indomable curiosidad (y cantidad de ayudas federales a la investigación), los datos suelen dar lugar a una cornucopia de ideas, teorías y sugerencias, la mayor parte de las cuales son erróneas. En el duelo por el control de la frontera hay, por lo que se refiere a los conceptos, sólo un ganador. Los perdedores se desvanecen en la ceniza de las notas a pie de página de la historia.
¿Cómo ocurre una revolución? Durante cualquier periodo de tranquilidad intelectual, como el que hubo a finales del siglo XIX, siempre existe un conjunto de fenómenos que «no se han explicado todavía». Los científicos experimentales tienen la esperanza de que sus observaciones maten la teoría reinante; entonces una teoría mejor tomará su lugar y se crearán nuevas reputaciones. Lo más corriente es que las mediciones sean erróneas o que un uso inteligente de la teoría explique los datos. Pero no siempre es así. Como hay siempre tres posibilidades —1) los datos son erróneos, 2) la teoría vieja aguanta, y 3) hace falta una teoría nueva—, el experimento hace de la ciencia un oficio vivo.
Una revolución extiende el dominio de la ciencia, y puede que influya además profundamente en nuestra concepción del mundo. Un ejemplo: Newton creó no sólo la ley universal de la gravitación, sino también una filosofía determinista que hizo que los teólogos le diesen a Dios un papel nuevo. Las reglas newtonianas establecieron las ecuaciones matemáticas que determinaban el futuro de cualquier sistema si se conocían las condiciones iniciales. Por el contrario, la física cuántica, aplicable al mundo atómico, suaviza la concepción determinista y permite a los sucesos atómicos individuales los placeres de la incertidumbre. En realidad, los desarrollos posteriores indican que incluso fuera del mundo subatómico el orden determinista newtoniano es una idealización excesiva. Las complejidades que componen el mundo macroscópico prevalecen hasta tal punto en muchos sistemas, que el cambio más insignificante en las condiciones iniciales produce cambios enormes en el resultado. Sistemas tan simples como el agua que fluye por una cuesta abajo o un par de péndulos oscilantes exhibirán un comportamiento «caótico». La ciencia de la dinámica no lineal, o «caos», nos dice que el mundo real no es tan determinista como antes se pensaba.
Lo que no quiere decir que la ciencia y las religiones orientales hayan descubierto de pronto que tienen mucho en común. En cualquier caso, si las metáforas religiosas ofrecidas por los autores de los textos que comparan la nueva física con el misticismo oriental os ayudan, de una forma u otra, a apreciar las revoluciones modernas de la física, entonces no dudéis en usarlas. Pero las metáforas sólo son metáforas. Son mapas burdos. Y tomando prestado un viejo dicho: no confundáis nunca el mapa con el territorio. La física no es una religión. Si lo fuese, nos sería mucho más fácil conseguir dinero.
SENADOR JOHN PASTORE: ¿Hay algo que tenga alguna relación con las esperanzas que suscita este acelerador y que, de una forma o de otra, afecte a la seguridad de este país?
ROBERT R. WILSON: No, señor. No lo creo.
PASTORE: ¿Nada en absoluto?
WILSON: Nada en absoluto.
PASTORE: ¿Carece de importancia en lo que a ella se refiere?
WILSON: Sólo tiene que ver con el respeto con que nos miramos unos a otros, la dignidad de los hombres, nuestro amor por la cultura. Tiene que ver con: ¿somos buenos pintores, buenos escultores, grandes poetas? Me refiero a todas las cosas que realmente veneramos y honramos en nuestro país y que excitan nuestro patriotismo. No tiene nada que ver directamente con la defensa de nuestro país salvo que hace que merezca la pena defenderlo.
Tenemos una tradición en el Fermilab. Cada primero de junio, llueva o haga sol, a las siete de la mañana se invita a la plantilla a correr los más de seis kilómetros alrededor del anillo principal del acelerador por la carretera de la superficie, que sirve además de pista de jogging. Corremos siempre en la dirección en que se aceleran los antiprotones. Mi último tiempo oficioso alrededor del anillo fue de 38 minutos. El actual director del Fermilab, mi sucesor John Peoples, comunicó, el primer verano que ocupó el puesto, que invitaba a la plantilla a correr el 1 de junio con «un director más joven y que corre más». Correr, corría más, pero ninguno de nosotros es lo suficientemente rápido para batir a los antiprotones. Completan el circuito en unas 22 millonésimas de segundo, lo que quiere decir que cada antiprotón me dobla unos cien millones de veces.
La plantilla del Fermilab sigue siendo humillada por los antiprotones. Pero vamos a la par; fuimos nosotros los que diseñamos los experimentos. Conducimos a los antiprotones a que choquen de frente contra los protones que corren justo a la misma velocidad en dirección contraria. El proceso de conseguir que las partículas choquen es la esencia de este capítulo.
El examen de los aceleradores que vamos a hacer será un poco un desvío. Hemos corrido a lo largo de siglos de progreso científico como un camión sin frenos. Vayamos un poco más despacio. No vamos a hablar aquí tanto de descubrimientos, ni de físicos siquiera, como de máquinas. Los instrumentos están unidos inseparablemente al progreso científico, del plano inclinado de Galileo a la cámara de chispas de Rutherford. Ahora, un instrumento ocupa el escenario central. No se puede entender la física de las últimas décadas si no se conoce la naturaleza de los aceleradores y la serie de detectores que los acompañan, los instrumentos dominantes en la especialidad durante los últimos cuarenta años. Al aprender sobre los aceleradores, aprendemos además mucha física, pues esta máquina incorpora muchos principios que los físicos han perfeccionado gracias a siglos de trabajo.
A veces pienso en la torre de Pisa como si hubiera sido el primer acelerador de partículas, un acelerador (casi) vertical que Galileo utilizó en sus estudios. Pero la historia verdadera empieza mucho más tarde. El desarrollo del acelerador dimana de nuestro deseo de llegar hasta el átomo. Dejando aparte a Galileo, la historia empieza con Ernest Rutherford y sus alumnos, que se convirtieron en maestros del arte de sacar provecho de la partícula alfa para explorar el átomo.
La partícula alfa es un regalo. Cuando un material radiactivo por naturaleza se desintegra espontáneamente, lanza estas partículas pesadas y de gran energía. La energía característica de una partícula alfa es de 5 millones de electronvoltios. Un electronvoltio (eV) es la cantidad de energía que un solo electrón recibiría si cruzase desde la carcasa (negativa) de la pila de 1 voltio de una linterna a su polo positivo. Cuando hayáis terminado los dos capítulos siguientes, el electronvoltio os será tan familiar como el centímetro, la caloría o el megabyte. Estas son cuatro abreviaturas que deberíais conocer antes de seguir adelante:
KeV
: mil electronvoltios (K de kilo)MeV
: un millón de electronvoltios (M de mega)GeV
: mil millones de electronvoltios (G de giga)TeV
: billón de electronvoltios (T de tera)
Más allá del TeV recurrimos a la notación de potencias de diez: 10¹² eV es un TeV. La tecnología previsible no pasa de 10
14
, y ahí entramos en el dominio de las partículas de los rayos cósmicos, que bombardean la Tierra desde el espacio exterior. El número de partículas de los rayos cósmicos es pequeño, pero sus energías pueden tornar cualquier valor hasta 10²¹ eV.
En la física de partículas, 5 MeV no es mucho; las alfas de Rutherford a duras penas rompían los núcleos de los átomos de nitrógeno en las que quizá fueron las primeras colisiones nucleares deliberadas. Y de ellas sólo salieron vislumbres tentadores de lo que había que descubrir. La teoría cuántica nos dice que cuanto menor sea el objeto que se estudia, más energía hace falta; es como afilar el cuchillo de Demócrito. Para partir eficazmente el núcleo necesitamos energías de muchas decenas o incluso cientos de MeV. Cuanto mayores sean, mejor.
Una digresión filosófica. Como contaré, los científicos de partículas iban construyendo tan contentos aceleradores cada vez más poderosos por todas las razones por las que cualquiera de nosotros, sapiens, hacemos algo: la curiosidad, el ego, el poder, la avaricia, la ambición… Muy a menudo, unos cuantos, en quieta contemplación ante una cerveza, le daremos vueltas a la cuestión de si el mismísimo Dios sabe qué producirá nuestra próxima máquina (por ejemplo, el «monstruo» de 30 GeV que en 1959 estaba a punto de terminarse en Brookhaven). ¿No estaremos acaso inventándonos nuestros propios problemas al conseguir esas nuevas, inauditas energías? ¿Dios, en Su inseguridad, mira por encima del hombro de GellMann o Feynman u otros de Sus teóricos favoritos para descubrir qué hay que hacer a esas energías gigantescas? ¿Convoca a un comité de ángeles residentes —Rabí Newton, Einstein, Maxwell— con el objeto de que le indiquen qué hay que hacer a los 30 GeV? La brusquedad de la historia de la teoría da de vez en cuando alas a este punto de vista, como si a Dios se le ocurriesen las cosas a medida que nosotros vamos hacia adelante. Sin embargo, el progreso en la astrofísica y en la investigación de los rayos cósmicos nos certifica enseguida que eso no es más que una tontería «del viernes por la noche antes del sabbath». Nuestros colegas que miran hacia arriba nos dicen con seguridad que al universo sí le importan mucho los 30 GeV, los 300 GeV, hasta los 3.000 millones de GeV. El espacio es barrido por partículas de energías astronómicas (¡uf!), y lo que hoy es un acontecimiento raro, exótico en un punto de colisión infinitesimal de Long Island o Batavia o Tsukuba era, nada más haber nacido el universo, ordinario, cotidiano, uno entre tantos.
Y ahora volvamos a las máquinas.
El acelerador más potente que existe hoy, el Tevatrón del Fermilab, produce colisiones a unos 2 TeV o 400.000 veces la energía que se creaba en las colisiones de las partículas alfa de Rutherford. El Supercolisionador Superconductor, aún por construir, se ha concebido para que opere a unos 40 TeV.
40 TeV suena como si fuese muchísima energía, y de hecho lo es cuando se invierte en una sola colisión de dos partículas. Pero deberíamos poner esto en perspectiva. Cuando encendemos una cerilla, participan unos 10²¹ átomos en la reacción, y cada proceso libera unos 10 eV, así que le energía total es aproximadamente 10²² eV, o unos 10.000 millones de TeV. En el Supercolisionador habrá 100 millones de colisiones por segundo, cada una de las cuales liberará 40 TeV, lo que da un total de unos 4.000 millones de TeV, ¡una cantidad no muy distinta de la energía que se libera al encender una cerilla! Pero la clave es que la energía se concentra en unas pocas partículas y no en los billones y billones y billones de partículas que hay en una pizca de materia visible.
Podemos ver todo el complejo del acelerador —de la estación de energía alimentada con petróleo, pasando por las líneas de energía eléctrica, al laboratorio donde los transformadores llevan la energía eléctrica a los imanes y las cavidades de radiofrecuencia— como un gigantesco dispositivo que concentra, con una eficiencia bajísima, la energía química del petróleo en unos insignificantes mil millones o así de protones por segundo. Si la cantidad macroscópica de petróleo se calentase hasta que cada uno de los átomos que la constituyen tuviese 40 TeV, la temperatura sería de 4 × 10
17
grados, 400.000 billones de grados en la escala Kelvin. Los átomos se derretirían en los quarks que los forman. Ese era el estado del universo entero menos de una mil billonésima de segundo tras la creación.