Desesperado, intenté que un rabino bendijera mi cámara de niebla. Por desgracia, escogí al rabino equivocado. Era ortodoxo, muy religioso, y cuando le pedí que le echase una brucha (hebreo: bendición) a mi cámara de niebla, exigió saber antes qué era una cámara de niebla. Le enseñé una foto, y se puso furioso de que le hubiera sugerido ese sacrilegio. El tipo siguiente con el que probé, un rabino conservador, tras ver la imagen, me preguntó cómo funcionaba la cámara. Se lo expliqué. Me escuchó, movió la cabeza de arriba abajo, se pasó la mano por la barba y finalmente, con tristeza, me dijo que no podía hacerlo. «La ley …» Así que fui al rabino de la Reforma. Cuando llegué a su casa, acababa de bajarse de su Jaguar XKE. «Rabino, ¿podría echarle una brucha a mi cámara de niebla?», le rogué. «¿Brucha?», respondió. «¿Qué es una brucha?» Así que me dejaron con un palmo de narices.
Al final estuve listo para la gran prueba. Al llegar a ese punto, todo tenía que funcionar, pero cada vez que ponía en marcha la cámara no me salía más que un denso humo blanco. Por entonces llegó a Columbia Gilberto Bernardini, un verdadero experto, y se puso a mirar lo que yo hacía.
—¿«Cosa e la varila» de metal metida en la cámara? —preguntaba.
—Es mi fuente radiactiva —le decía—, la que produce las trazas. Pero no me sale nada más que humo blanco.
—Sácala.
—¿Que la saque?
—Sí, sí, fuera.
Así que la saqué, y unos cuantos minutos después… ¡trazas! Por la cámara se abrían paso unas hermosas trazas ondulantes. La imagen más bella que jamás hubiese visto. Lo que pasaba era que mi fuente de milicurios era tan intensa que llenaba la cámara de iones y cada uno hacía crecer su propia gota. El resultado: un humo denso, blanco. No me hacía falta una fuente radiactiva. Los rayos cósmicos, omnipresentes en el espacio a nuestro alrededor, proporcionan amablemente bastante radiación. Ecco!
La cámara de niebla resultó ser un instrumento muy productivo porque con ella se podía fotografiar el rastro de las gotas minúsculas que se formaban a lo largo de la traza de las partículas que la atravesaban. Equipada con un campo magnético, las trazas se curvan, y al medir el radio de esa curvatura obtenemos el momento de las partículas. Cuanto más cerca estén las trazas de ser rectas (menos curvatura), mayor energía tienen las partículas. (Acordaos de los protones en el ciclotrón de Lawrence, que ganaban momento y entonces describían grandes círculos.) Tomamos miles de imágenes que descubrían una variedad de datos sobre las propiedades de los piones y de los muones. La cámara de niebla —vista como un instrumento, no como la fuente de mi doctorado y de mi plaza— nos permitía observar unas cuantas docenas de trazas por fotografía. Los piones tardan alrededor de una milmillonésima de segundo en atravesar la cámara. Es posible formar una capa densa de material en la que tenga lugar una colisión, lo que ocurre quizá en una de cada cien fotografías. Como sólo se puede tomar una imagen por minuto, el ritmo de acumulación de datos está más limitado.
El siguiente avance fue la cámara de burbujas, inventada a mediados de los años cincuenta por Donald Glaser, por entonces en la Universidad de Michigan. La primera cámara de burbujas fue un dedal de hidrógeno líquido. La última que se usó —fue retirada del Fermilab en 1987— era una vasija de cuatro metros y medio por tres de acero inoxidable y cristal.
En una cámara llena de líquido, a menudo hidrógeno licuado, se forman unas burbujas diminutas a lo largo del rastro de las partículas que la atraviesan. Las burbujas indican que se produce una ebullición debida a la disminución súbita deliberada de la presión del líquido. Así, éste se pone por encima del punto de ebullición, que depende tanto de la temperatura como de la presión. (Puede que hayáis sufrido lo difícil que es cocer un huevo en vuestro chalé de la montaña. A la baja presión de las cimas de las montañas, el agua hierve bien por debajo de los 100° C.) Un líquido limpio, no importa lo caliente que esté, se resiste a hervir. Por ejemplo, si calentáis un poco de aceite en un pote hondo por encima de su temperatura de ebullición normal, y todo está realmente limpio, no hervirá. Pero echad un solo trozo de patata, y se pondrá a hervir explosivamente. Así que para producir burbujas, hacen falta dos cosas: una temperatura por encima del punto de ebullición y algún tipo de impureza que aliente la formación de una burbuja. En la cámara de burbujas se sobrecalienta el líquido mediante la disminución súbita de la presión. La partícula cargada, en sus numerosas colisiones suaves con el líquido, deja un rastro de átomos excitados que, tras la disminución de la presión, es ideal para la nucleación de las burbujas. Si se produce en la vasija una colisión entre la burbuja incidente y un protón (núcleo de hidrógeno), todos los productos cargados que se generan se hacen también visibles. Como el medio es un líquido, no se necesitan placas densas, y el punto de colisión se ve claramente. Los investigadores de todo el mundo tomaron millones de fotografías de las colisiones en las cámaras de burbujas, ayudados en sus análisis por dispositivos automáticos de lectura.
Funciona así. El acelerador dispara un haz de partículas hacia la cámara de burbujas. Si se trata de un haz de partículas cargadas, diez o veinte trazas empiezan a poblar la cámara. En un milisegundo o así tras el paso de las partículas, se mueve rápidamente un pistón, que hace que descienda la presión y con ello empiece la formación de las burbujas. Tras otro milisegundo o así de tiempo de crecimiento, se enciende un destello de luz, la película se mueve y ya estamos listos para otro ciclo.
Se dice que Glaser (que ganó el premio Nobel por su cámara de burbujas e inmediatamente se hizo biólogo) sacó su idea de la nucleación de burbujas estudiando el truco de hacer que el copete de espuma de un vaso de cerveza sea mayor echándole sal. Los bares de Ann Arbor, Michigan, engendraron, pues, uno de los instrumentos que más éxito haya tenido de los que se han empleado para seguir las huellas de la Partícula Divina.
El análisis de las colisiones tiene dos claves: el espacio y el tiempo. Nos gustaría registrar la trayectoria de una partícula en el espacio y el tiempo preciso de su paso. Por ejemplo, una partícula entra en el detector, se para, se desintegra y da lugar a una partícula secundaria. Un buen ejemplo de partícula que se para es el muón, que puede desintegrarse en un electrón, separado temporalmente una millonésima de segundo más o menos del momento de la detención. Cuanto más preciso sea el detector, mayor será la información. Las cámaras de burbujas son excelentes para el análisis espacial del suceso. Las partículas dejan trazas, y en la cámara de burbujas podemos localizar puntos en esas trazas con una precisión de alrededor de un milímetro. Pero no ofrecen información temporal.
Los contadores de centelleo pueden localizar las partículas tanto en el espacio como en el tiempo. Están hechos de plásticos especiales y producen un destello de luz cuando incide en ellos una partícula cargada. Van envueltos en plástico negro opaco, y se hace que cada uno de esos minúsculos destellos de luz confluya en un fotomultiplicador electrónico que convierte la señal, indicadora del paso de una partícula, en un impulso eléctrico nítidamente definido. Cuando ese impulso se superpone a un tren electrónico de impulsos de reloj, se puede registrar la llegada de una partícula con una precisión de unas pocas mil millonésimas de segundo. Si se usan muchas tiras de centelleo, la partícula dará en varias sucesivamente y dejará una serie de impulsos que describirán su trayectoria espacial. La localización espacial depende del tamaño del contador; por lo general, la determina con una precisión de unos cuantos centímetros.
La cámara proporcional de hilos (PWC) fue un avance de la mayor importancia. La inventó un francés prolífico que trabaja en el CERN, Georges Charpak. Héroe de la segunda guerra mundial y de la resistencia, prisionero en un campo de concentración, Charpak llegó a ser el inventor más destacado de aparatos detectores de partículas. En su PWC, un aparato ingenioso y «simple», se tiende una serie de hilos finos sobre un bastidor, separados sólo unos pocos milímetros. El bastidor mide normalmente sesenta centímetros por ciento veinte, y hay unos cuantos cientos de hilos de sesenta centímetros de largo tendidos en ese espacio de un metro y veinte centímetros. Se organizan los voltajes de forma que cuando pase una partícula cerca de un hiló, se genere en éste un impulso eléctrico, que se registra. La localización precisa del hilo afectado determina un punto de la trayectoria. Se obtiene el instante en que se ha producido el impulso por comparación con un reloj electrónico. Gracias a mejoras adicionales, las definiciones espacial y temporal pueden afinarse hasta, aproximadamente, 0,1 milímetros y 10
−8
segundos. Con muchos planos como este apilados en una caja hermética rellena de un gas apropiado se pueden definir con precisión las trayectorias de las partículas. Como la cámara sólo se activa durante un corto intervalo de tiempo, los sucesos aleatorios de fondo quedan suprimidos y cabe usar haces intensísimos. Los PWC de Charpak han formado parte de todos los experimentos importantes de física de partículas desde 1970, más o menos. En 1992, Charpak ganó el premio Nobel (¡él solo!) por su invento.
Todos estos sensores de partículas, y otros, se incorporaron en los depurados detectores de los años ochenta. El detector CDF del Fermilab es un caso típico entre los sistemas más complejos. Tiene tres pisos de altura, pesa 5.000 toneladas y su construcción costó 60 millones de dólares; se diseñó para observar las colisiones frontales de los protones y los antiprotones en el Tevatrón. En él, 100.000 sensores, entre los cuales hay contadores de centelleo e hilos cuyas configuraciones se han diseñado con el mayor cuidado, alimentan con corrientes de información en la forma de impulsos electrónicos un sistema que organiza, filtra y, por último, registra los datos para su análisis futuro.
Como en todos los detectores semejantes, hay demasiada información para que pueda ser manejada en tiempo real —es decir, inmediatamente—, así que los datos se codifican en forma digital y se organizan para grabarlos en una cinta magnética.
El ordenador debe decidir qué colisiones son «interesantes» y cuáles no, pues en el Tevatrón se producen más de 100.000 por segundo, y se espera que esta cifra se incremente en la primera mitad de los años noventa hasta un millón de colisiones por segundo. Ahora bien, la mayoría de esas colisiones carece de interés. Las más preciosas son aquellas en las que un quark de un protón le da realmente un beso a un antiquark o incluso a un gluón del p-barra. Estas colisiones duras son raras.
El sistema que maneja la información tiene menos de una millonésima de segundo para examinar una colisión en concreto y tomar una decisión fatal: ¿es interesante este suceso? Para un ser humano, es una velocidad que da vértigo, pero no para un ordenador. Todo es relativo. En una de nuestras grandes ciudades, una banda de caracoles atacó y robó a una tortuga. Cuando más tarde le preguntó la policía, la tortuga dijo: «No lo sé. ¡Todo pasó tan deprisa!».
Para aliviar la toma electrónica de decisiones, se ha desarrollado un sistema de niveles secuenciales de selección de sucesos. Los experimentadores programan los ordenadores con varios «disparadores», indicadores que le dicen al sistema qué sucesos ha de registrar. Un suceso que descargue una gran cantidad de energía en el detector, por ejemplo, es un disparador típico, pues es más probable que ocurran fenómenos nuevos a altas energías que a bajas. Establecer los disparadores es como para que a uno le entren sudores fríos. Si son demasiado laxos, abrumas la capacidad y la lógica de las técnicas de registro. Si los pones demasiado estrictos, puede que te pierdas alguna física nueva o que hayas hecho el experimento para nada. Hay disparadores que saltarán a «vale» cuando se detecte que de la colisión sale un electrón de mucha energía. A otro disparador le convencerá la estrechez de un chorro de partículas, y así sucesivamente. Lo normal es que haya de diez a veinte configuraciones diferentes de sucesos de colisión a los que se permite que activen un disparador. El número total de sucesos que los disparadores dejan pasar puede ser de 5.000 a 10.000 por segundo, pero el ritmo de sucesos es así lo bastante bajo (uno cada diezmilésima de segundo) para que dé tiempo a «pensar» y a examinar —¡ejem!; a que examine el ordenador— los candidatos con más cuidado. ¿Queréis de verdad registrar este suceso? El filtrado prosigue a través de cuatro o cinco niveles hasta que no queden más de unos diez sucesos por segundo.
Cada uno de esos sucesos se graba en una cinta magnética con todo detalle. A menudo, en las etapas donde rechazamos sucesos, se graba una muestra de, digamos, uno de cada cien para estudiarlos más adelante y determinar si se está perdiendo una información importante. El sistema entero de adquisición de datos (DAQ) es posible gracias a una alianza nada santa de los físicos que creen que saben lo que quieren saber, los inteligentes ingenieros electrónicos que se esfuerzan duramente por agradar y, ¡oh, sí!, una revolución en la microelectrónica comercial basada en los semiconductores.
Los genios de toda esta tecnología son demasiado numerosos para citarlos, pero, desde mi punto de vista subjetivo, uno de los innovadores más destacados fue un tímido ingeniero electrónico que trabajaba en una buhardilla del Laboratorio de Nevis de la Universidad de Columbia, donde yo me formé. William Sippach iba muy por delante de los físicos bajo cuyo control estaba. Nosotros dábamos las especificaciones; él diseñaba y construía el DAQ. Una y otra vez le llamaba a las tres de la madrugada quejándome de que habíamos dado con una seria limitación de su (siempre era suya cuando había un problema) electrónica. Él escuchaba tranquilamente y hacía una pregunta: «¿has visto un microconmutador que hay dentro de la placa de la cubierta del estante catorce? Actívalo y tu problema estará resuelto. Buenas noches». La fama de Sippach se extendió, y en una semana corriente se dejaban caer visitantes de New Haven, Palo Alto, Ginebra y Novosibirsk para hablar con Bill.
Sippach y muchos otros que contribuyeron a desarrollar estos complejos sistemas continúan una gran tradición que empezó en los años treinta y cuarenta, cuando se inventaron los circuitos de los primeros detectores de partículas, que, a su vez, se convirtieron en los ingredientes fundamentales de la primera generación de ordenadores digitales. Y éstos, por su parte, engendraron mejores aceleradores y detectores, que engendraron…