Introducción a la ciencia II. Ciencias Biológicas (50 page)

BOOK: Introducción a la ciencia II. Ciencias Biológicas
4.4Mb size Format: txt, pdf, ePub
ads

En la oscuridad, el retineno se recombina siempre con lo opsina para formar rodopsina. Pero, durante su separación de la opsina por efecto de la luz, un pequeño porcentaje se descompone, porque es muy inestable. Sin embargo, el suministro de retineno se completa a partir de la vitamina A, que es convertida en retineno por medio de la extracción, con la ayuda de enzimas, de dos átomos de hidrógeno. Así, la vitamina A actúa como una reserva de retineno. Si falta vitamina A en la dieta, el suministro de retineno y la cantidad de púrpura visual disminuye, de lo que resulta ceguera nocturna.

La vitamina A debe tener asimismo otras funciones, ya que una deficiencia de ella provoca sequedad de las membranas mucosas y otros síntomas que no pueden ser exactamente fijados, pero que se traducen en trastornos en la retina del ojo. Sin embargo, dichas funciones continúan desconociéndose.

Igual puede decirse sobre las funciones químicas de las vitaminas C, D, E y K.

Minerales

Es lógico suponer que los materiales que constituyen algo tan asombroso como el tejido vivo deben ser también, a su vez, algo hermoso y exótico. Las proteínas y los ácidos nucleicos son ciertamente asombrosos, pero, sin embargo, es humillante comprobar que los demás elementos que constituyen el cuerpo humano son tan corrientes como el barro, y que todo el conjunto podría ser comprado por unos pocos dólares. (Debiera haber utilizado «centavos», pero la inflación ha aumentado el precio de las cosas.)

A principios del siglo XIX, cuando los químicos estaban empezando a analizar los compuestos orgánicos, resultó evidente que el tejido vivo estaba constituido, principalmente, por carbono, hidrógeno, oxígeno y nitrógeno. Sólo estos cuatro elementos constituían aproximadamente el 96 % de la masa del cuerpo humano. Además, existía también algo de azufre en el cuerpo. Si se queman estos cinco elementos, se hallará una pequeña cantidad de ceniza blanca, en gran parte residuo de los huesos. Esta ceniza es un conjunto de minerales.

No es sorprendente hallar sal común, cloruro sódico, en las enzimas. Después de todo, la sal no es únicamente un condimento para mejorar el sabor de la comida —del que se puede prescindir—, como de la albahaca, el romero o el tomillo. Es un asunto de vida o muerte, únicamente se necesita paladear un poco de sangre para comprobar que la sal es un componente básico del organismo. Los animales herbívoros, que probablemente no son nada sofisticados en lo que se refiere a las delicias en la preparación de los alimentos, soportarán, sin embargo, grandes peligros y privaciones para conseguir una «lengüeta de sal», compensando así la carencia de ella en su dieta de hierbas y hojas.

En una época tan antigua como mediados del siglo XVIII, el químico sueco Johann Gottlieb Gahn había demostrado que los huesos están constituidos, en su mayor parte, de fosfato cálcico, y un científico italiano, V. Menghini, había establecido que la sangre contenía hierro. En 1847, Justus von Liebig halló potasio y magnesio en los tejidos. Posteriormente, a mediados del siglo XIX, los constituyentes minerales del cuerpo conocidos incluían calcio, fósforo, sodio, potasio, cloro, magnesio y hierro. Además, éstos resultaban ser tan activos en el proceso vital como cualquiera de los elementos generalmente asociados a los compuestos orgánicos.

El caso del hierro es el más evidente. Si falta en la dieta, la sangre se vuelve deficiente en hemoglobina y transporta menos oxígeno de los pulmones a las células. Esta enfermedad es conocida como la «anemia por deficiencia de hierro». El paciente empalidece, al carecer del pigmento rojo, y se fatiga debido a la escasez de oxígeno. En 1882, el médico inglés Sidney Ringer halló que el corazón de una rana podía ser mantenido con vida y latiendo, fuera de su cuerpo, en una solución (llamada «solución de Ringer») que contenía, entre otras cosas, sodio, potasio y calcio, en aproximadamente las mismas proporciones halladas en la sangre de la rana. Todos eran esenciales para el funcionamiento del músculo. Un exceso de calcio determinaba que el músculo se contrajera de modo permanente («rigor del calcio»), mientras que un exceso de potasio obligaba al músculo a una relajación constante («inhibición del potasio»). Además, el calcio era vital para la coagulación de la sangre.

En su ausencia, la sangre no se coagulaba, y ningún otro elemento podía sustituir el calcio en este sentido.

Eventualmente se descubrió que, de todos los minerales, el fósforo era el que conseguía las funciones más variadas y cruciales en la mecánica química de la vida (véase capítulo 13).

El calcio, un componente principal del hueso, constituye el 2 % del peso total del cuerpo; el fósforo, el 1 %.

Los otros minerales mencionados están presentes en pequeñas proporciones, el menor de ellos el hierro, que forma solamente el 0,004 % del total del cuerpo humano.

(Esto permite todavía que exista un promedio de 2,8 g de hierro en los tejidos de un varón adulto.)

Pero no hemos llegado todavía al final de la lista; existen otros minerales que, aunque presentes en los tejidos en cantidades sólo difícilmente detectables, sin embargo, son esenciales para la vida.

La mera presencia de un elemento no es necesariamente significativa; puede ser tan sólo una impureza. En nuestra comida, ingerimos por lo menos trazas de todos los elementos de nuestro medio ambiente, y pequeñas cantidades de ellos pueden hallar el camino hasta nuestros tejidos. Pero elementos tales como la sílice y el aluminio, por ejemplo, no nos aportan absolutamente nada.

Por el contrario, el cinc es vital. ¿Cómo puede distinguirse un mineral esencial de una impureza accidental?

La mejor forma de conseguirlo es demostrar que alguna enzima necesaria contenga el elemento en forma de traza como un componente esencial. (¿Por qué una enzima? Porque cualquier elemento en forma de traza [llamado oligoelemento] posiblemente no puede de ningún otro modo desempeñar un papel importante.)

En 1939, David Keilin y T. Mann, de Inglaterra, demostraron que el cinc formaba parte integral de la enzima anhidrasa carbónica.

Ahora bien, la anhidrasa carbónica es esencial para la asimilación por parte del cuerpo del anhídrido carbónico, y el adecuado manejo de aquel importante material de residuo es a su vez esencial para la vida. De ello se deduce la teoría de que el cinc es indispensable para la vida, y los experimentos demuestran que realmente es así. Ratas alimentadas con una dieta pobre en cinc detienen su crecimiento, pierden vello, sufren escamosis de la piel y mueren prematuramente a causa de la carencia de cinc, del mismo modo que si carecieran de una vitamina.

Del mismo modo se ha demostrado que el cobre, el manganeso, el cobalto y el molibdeno son esenciales para la vida animal. Su ausencia en la dieta da lugar a enfermedades carenciales. El molibdeno, el último de los oligoelementos esenciales en ser identificado (en 1954), es un componente de una enzima llamada «xantinooxidasa». La importancia del molibdeno fue comprobada en primer lugar, en 1940, en relación con las plantas, cuando los científicos investigadores del suelo hallaron que las plantas no crecían adecuadamente en aquellos suelos que eran deficientes en este elemento. Parece que el molibdeno es un componente de ciertas enzimas en microorganismos presentes en el terreno, que catalizan la conversión del nitrógeno del aire en compuestos nitrogenados. Las plantas dependen de esta ayuda procedente de los microorganismos, porque no pueden por sí mismas obtener el nitrógeno a partir del aire. (Éste es solamente uno del considerable número de ejemplos que demuestran la estrecha interdependencia de toda la vida en nuestro planeta. El mundo viviente es una larga e intrincada cadena que puede sufrir cierto perjuicio, o incluso un desastre, si se rompe algún eslabón.)

No todos los «oligoelementos» son universalmente esenciales. El boro parece serlo en forma de trazas para la vida vegetal, pero no, aparentemente, para los animales. Ciertos tunicados acumulan vanadio a partir del agua de mar y lo utilizan en su componente transportador de oxígeno, pero pocos de los demás animales, si es que existe alguno más, necesitan vanadio por motivo alguno. Se ha comprobado hoy en día que existen desiertos de oligoelementos, al igual que existen desiertos carentes de agua; ambos generalmente aparecen juntos, pero no siempre. En el suelo de Australia, los científicos han hallado que unos 28 g de molibdeno, en forma de algún compuesto apropiado, esparcidos sobre unas 6,5 Ha de tierra con deficiencia de él, se traduce en un considerable incremento en la fertilidad. Tampoco es éste solamente un problema de las tierras exóticas. Un estudio de la tierra de laboreo americana, en 1960, mostró la existencia de áreas de deficiencia de boro en 41 Estados. La dosificación de los oligoelementos es crucial. Es tan perjudicial en exceso como por defecto, ya que algunas sustancias que son esenciales para la vida en pequeñas cantidades (por ejemplo, el cobre) en grandes cantidades se transforman en venenosas.

Esto, por supuesto, conduce, como una consecuencia lógica, a la muy antigua costumbre de utilizar «fertilizantes» para el suelo. Hasta los tiempos modernos, la fertilización era realizada mediante el uso de los excrementos de los animales, abono o guano, que restituían el nitrógeno y el fósforo al suelo. Sin embargo, la operación estaba en todo momento acompañada de olores desagradables y de la siempre presente posibilidad de una infección. La sustitución de éstos por los fertilizantes químicos, limpios y libres de olor, fue conseguida gracias al trabajo de Justus von Liebig, a principios del siglo XIX.

Cobalto

Uno de los episodios más espectaculares en el descubrimiento de las deficiencias en minerales tuvo lugar con el cobalto. Relacionada con ello estaba la fatal enfermedad, en otro tiempo incurable, llamada «anemia perniciosa».

A principios de la década de 1920, el patólogo de la Universidad de Rochester, George Hoyt Whipple estaba experimentando sobre la reposición de la hemoglobina por medio de diversas sustancias alimentarias. Había sangrado a perros, con objeto de inducir en ellos una anemia, y luego los había alimentado con diversas dietas, para ver cuál de ellas permitía recuperar con mayor rapidez la perdida hemoglobina. No realizaba este experimento porque estuviera interesado en la anemia perniciosa, o en cualquier otro tipo de anemia, sino debido a que se dedicaba a investigar los pigmentos biliares, compuestos producidos por el organismo a partir de la hemoglobina. Whipple descubrió que el alimento que permitía a los perros producir más rápidamente hemoglobina era el hígado.

En 1926, dos médicos de Boston, George Richards Minot y William Parry Murphy, consideraron los resultados de Whipple y decidieron probar el hígado como tratamiento para los pacientes con anemia perniciosa. El tratamiento prosperó. La enfermedad incurable podía ser curada, cuando los pacientes ingerían hígado como una parte de su dieta. Whipple, Minot y Murphy compartieron el premio Nobel de Medicina y Fisiología en 1934.

Por desgracia, el hígado, aunque es un plato exquisito cuando se cocina apropiadamente, y luego se corta y mezcla cuidadosamente con elementos tales como los huevos, la cebolla y los menudillos de pollo, se convierte en algo insoportable cuando se emplea como dieta permanente. (Al cabo de un tiempo, un paciente podría estar tentado a considerar que la anemia perniciosa resulta preferible a este tratamiento.) Los bioquímicos se dedicaron a investigar la sustancia curativa del hígado, y, en 1930, Edwin Joseph Cohn y sus colaboradores de la Harvard Medical School prepararon un concentrado cien veces más potente que el propio hígado. Sin embargo, para aislar el factor activo fue necesaria una posterior purificación. Por suerte, los químicos de los «Laboratorios Merck» descubrieron, en los años cuarenta, que el concentrado de hígado podía acelerar el crecimiento de ciertas bacterias. Esto proporcionaba una fácil prueba de la potencia de cualquier preparado de éste, de forma que los bioquímicos procedieron a escindir el concentrado en fracciones y a ensayarlas en rápida sucesión. Debido a que la bacteria reaccionaba con la sustancia hepática, en gran parte de la misma forma con que reaccionaba ante la tiamina o la riboflavina, los investigadores sospecharon entonces con fundadas razones que el factor que estaban buscando era una vitamina B. Lo llamaron «vitamina B
12
».

En 1948, utilizaron la respuesta bacteriana y la cromatografía, Ernest Lester Smith, en Inglaterra, y Karl August Folkers, en los «Laboratorios Merck», consiguieron aislar muestras puras de vitamina B
12
. La vitamina demostraba ser una sustancia roja, y ambos científicos pensaron que su color era parecido al de ciertos compuestos de cobalto. Por aquel tiempo se sabía que una deficiencia de cobalto causaba una anemia grave en el ganado y las ovejas. Tanto Smith como Folkers quemaron muestras de vitamina B
12
, analizaron las cenizas y hallaron que éstas realmente contenían cobalto. El compuesto fue denominado entonces «cianocobalamina». Hasta hoy, es el único compuesto con un contenido de cobalto que ha sido hallado en el tejido vivo.

Por descomposición y posterior examen de los fragmentos, los químicos decidieron rápidamente que la vitamina B
12
era un compuesto extremadamente complicado, y elaboraron una fórmula empírica de C
63
H
88
O
14
N
94
PCo. Más tarde, un químico británico, Dorothy Crowfoot Hodgkin, determinó su estructura global por medio de los rayos X. El tipo de difracción establecido por los cristales del compuesto permitía crear una imagen de las «densidades electrónicas» a lo largo de la molécula, es decir, de aquellas regiones donde la probabilidad de hallar algún electrón era elevada y de aquellas otras donde esta probabilidad era escasa. Si se trazaban líneas que unieran las regiones con la misma probabilidad, se creaba una especie de imagen esquemática de la forma de la molécula en conjunto.

Esto no resulta tan fácil como parece. Las moléculas orgánicas complicadas pueden producir una dispersión de rayos X verdaderamente formidable en su complejidad. Las operaciones matemáticas requeridas para traducir esta dispersión en densidades electrónicas era enormemente tediosa. En 1944, habían sido solicitadas computadoras electrónicas para colaborar en la formulación estructural de la penicilina. La vitamina B
12
era mucho más complicada, y Miss Hodgkin tuvo que utilizar una computadora aún más avanzada —el «National Bureau of Standards Western Automatic Computer» (SWAC)— y realizar una pesada labor preparatoria. Sin embargo, esta labor, eventualmente, le representó el premio Nobel de Química, en 1964.

BOOK: Introducción a la ciencia II. Ciencias Biológicas
4.4Mb size Format: txt, pdf, ePub
ads

Other books

The Heir of Mondolfo by Mary Wollstonecraft Shelley
Rogue Elements by Hector Macdonald
Ice Diaries by Revellian, Lexi
Dead People by Ewart Hutton
Prison Throne by T. Styles
Freeing by E.K. Blair