Read Introducción a la ciencia II. Ciencias Biológicas Online
Authors: Isaac Asimov
Naturalmente, los bioquímicos sentían curiosidad por averiguar cómo las vitaminas, presentes en el organismo en cantidades tan pequeñas, ejercían efectos tan importantes en la química corporal. La deducción obvia era que tenían algo que ver con las enzimas, también presentes en pequeñas cantidades.
La respuesta llegó finalmente a través de detallados estudios sobre la química de las enzimas. Los químicos dedicados al estudio de las proteínas sabían desde hacía tiempo que algunas proteínas no estaban formadas únicamente de aminoácidos, y que podían existir grupos protéticos no aminoácidos, como el heme en la hemoglobina (véase capítulo 12). En general, estos grupos protéticos tendían a estar fuertemente unidos al resto de la molécula. Sin embargo, en las enzimas existían, en algunos casos, porciones no aminoácidas que estaban unidas muy ligeramente y podían ser extraídas sin demasiados problemas.
Ello fue descubierto, en 1904, por Arthur Harden (que poco después descubriría compuestos intermedios que contenían fósforo; véase capítulo 12). Harden trabajó con un extracto de levadura capaz de provocar la fermentación del azúcar. Lo colocó en una bolsa hecha con una membrana semipermeable e introdujo la bolsa en agua dulce. Las moléculas pequeñas podían traspasar la membrana, pero la molécula de proteína, de un tamaño mayor, no podía hacerlo. Después que esta «diálisis» hubiera progresado durante un tiempo, Harden descubrió que se había perdido la actividad del extracto. Ni el fluido del interior de la bolsa ni el del exterior de la misma podían hacer fermentar el azúcar. Si se combinaban ambos fluidos, la actividad se reemprendía.
Aparentemente, la enzima estaba formada no sólo por una gran molécula de proteína, sino también por una molécula de «coenzimas», lo suficientemente pequeña como para pasar a través de los poros de una membrana.
La coenzima era esencial para la actividad de la enzima (como si dijéramos el «filo del cuchillo»).
Inmediatamente, los químicos se plantearon el problema de determinar la estructura de esta coenzima (y de parecidos elementos adicionales a otras enzimas). El químico de la Suiza alemana Hans Karl August Simon von Euler-Chelpin fue el primero en obtener un progreso real en este sentido. Como resultado, él y Harden compartieron el premio Nobel de Química en 1929.
La coenzima de la enzima de levadura estudiada por Harden consistía en una combinación de una molécula de adenina, dos moléculas de ribosa, dos grupos de fosfato y una molécula de «nicotinamida». Sin embargo, esta última era una forma que no se encuentra normalmente en los tejidos vivos, por lo que el interés se centró naturalmente en ella. (Se llama «nicotinamida» porque contiene un grupo amida, NH
2
CO, y puede formarse fácilmente a partir del ácido nicotínico. El ácido nicotínico está relacionado estructuralmente con el alcaloide del tabaco «nicotina», pero ambos son muy distintos en cuanto a sus propiedades; el ácido nicotínico es necesario para la vida, mientras que la nicotina es un veneno mortal.) Las fórmulas de la nicotinamida y el ácido nicotínico son:
Una vez determinada la fórmula, se la rebautizó pronto con el nombre de «nucleótido difosfopiridina» (DPN) —«nucleótido» por la característica disposición de la adenina, ribosa y fosfato, similar a la de los nucleótidos que forman el ácido nucleico, y «piridina» por el nombre dado a la combinación de átomos que forman el anillo en la fórmula de la nicotinamida.
Pronto se encontró una coenzima muy similar, que difería del DPN únicamente en que contenía tres grupos de fosfato en lugar de dos. A éste, naturalmente, se lo denominó «nucleótido trifosfopiridina» (TPN). Ambos, el DPN y el TPN, demostraron ser coenzimas de determinadas enzimas corporales, todas con la misión de transferir átomos de hidrógeno de una molécula a otra. (Tales enzimas se denominan «deshidrogenasa».) Era la coenzima la que realizaba el verdadero trabajo de transferir el hidrógeno; la enzima apropiada en cada caso seleccionaba el sustrato en el que debía realizarse esta operación.
La enzima y la coenzima tenían, cada una, una función vital, y, si faltaba cualquiera de ellas, la liberación de la energía de los alimentos por medio de la transferencia de hidrógeno se retardaba hasta debilitarse.
Lo más sorprendente era que el grupo nicotinamida representaba la única parte de la enzima que el cuerpo no podía producir por sí mismo. El cuerpo humano puede fabricar todas las proteínas que necesita y todos los ingredientes del DPN y del TPN a excepción de la nicotinamida; ésta debe encontrarse ya elaborada (o al menos en forma de ácido nicotínico) en la dieta.
De lo contrario, se detiene la producción de DPN y TPN y todas las reacciones de transferencia de hidrógeno controlada por ellos se retardan.
¿Era la nicotinamida o el ácido nicotínico una vitamina? Funk (el hombre que acuñó la palabra «vitamina») había aislado ácido nicotínico a partir de la cascarilla del arroz. El ácido nicotínico no era la sustancia que curaba el beriberi, y, por tanto, lo ignoró. Pero, debido a la aparición del ácido nicotínico en relación con las coenzimas, el bioquímico Conrad Arnold Elvehiem y sus colaboradores de la Universidad de Wisconsin lo probaron en otra enfermedad carencial.
En la década de 1920, el físico norteamericano Joseph Goldberger había estudiado la pelagra (algunas veces denominada lepra italiana), una enfermedad endémica en el Mediterráneo y casi epidémica en el sur de los Estados Unidos a principio de este siglo. Los signos más evidentes de la pelagra son una piel seca, escamosa, diarrea y lengua inflamada; algunas veces provoca trastornos mentales. Goldberger observó que la enfermedad afectaba a aquellas personas que tenían una dieta muy limitada (principalmente harina de maíz), y llegaba a diezmar a las familias que poseían una vaca lechera. Comenzó a experimentar con dietas artificiales, alimentando con ellas a animales y a los presos de la cárcel (donde la pelagra parecía frecuente). Por último, consiguió provocar en los perros la «lengua negra» (una enfermedad análoga a la pelagra) y curarla con un extracto de levadura.
Descubrió que podía curar la pelagra en los presidiarios añadiendo leche en su dieta. Goldberger decidió que aquel hecho estaba relacionado con la existencia de alguna vitamina y la denominó factor P-P («preventivo de la pelagra» ).
Fue la pelagra la enfermedad escogida por Elvehiem para probar el ácido nicotínico.
Administró una pequeña dosis de éste a un perro con lengua negra y el perro respondió mejorando considerablemente. Unas pocas dosis más lo curaron por completo. El ácido nicotínico era, pues, una vitamina; era el factor P-P.
La «Asociación Médica Americana», preocupada por la posibilidad de que la gente creyese que el tabaco contenga vitaminas, propuso que la vitamina no fuese denominada ácido nicotínico, y sugirió, para sustituir este nombre, los de «niacina» (una abreviatura de
ácido nicotínico
) o «niacinamida».
Niacina fue el término que se popularizó.
Gradualmente se fue poniendo de manifiesto que las diversas vitaminas no eran más que porciones de coenzimas, cada una consistente en un grupo molecular que ni los animales ni tampoco el hombre podían producir por sí mismos.
En 1932, Warburg había descubierto una coenzima amarilla que catalizaba la transferencia de átomos de hidrógeno.
El químico austríaco Richard Kuhn y sus colaboradores aislaron poco después la vitamina B
2
, que probó ser amarilla, y que presentaba la siguiente estructura:
La cadena de carbono ligada al anillo medio es como una molécula denominada «ribitol», por lo que la vitamina B
2
fue denominada «riboflavina» (el término «flavina» proviene de una palabra latina que significa «amarillo»). Puesto que el examen de su espectro mostraba que la riboflavina era muy similar en cuanto a color a la coenzima amarilla de Warburg, Kuhn, en 1935, estudió la coenzima en busca de la actividad de la riboflavina y encontró que así sucedía. En el mismo año, el bioquímico sueco Hugo Theorell dilucidó la estructura de la coenzima amarilla de Warburg y demostró que se trataba de la riboflavina con la adición de un grupo fosfato. (En 1954, se demostró que una segunda y más complicada coenzima tenía riboflavina como parte de su molécula.)
Kuhn fue galardonado con el premio Nobel de Química en 1938, y Theorell recibió el de Medicina y Fisiología en 1955. Sin embargo, Kuhn tuvo la desgracia de ser seleccionado para el premio poco después de que Austria fuese absorbida por la Alemania nazi y (al igual que Gerhard Domagk) se vio obligado a rechazarlo.
La riboflavina fue sintetizada, independientemente, por el químico suizo Paul Karrer. Por éste y otros trabajos en el campo de las vitaminas, Karrer fue galardonado con el premio Nobel de Química en 1937 (compartiéndolo con el químico inglés Walter Norman Haworth, quien había determinado la estructura de las moléculas de los hidratos de carbono).
En 1937, los bioquímicos alemanes K. Lohmann y P. Schuster descubrieron una importante coenzima que contenía tiamina como parte de su estructura. Durante los años cuarenta se descubrieron otras conexiones entre las vitaminas del grupo B y las coenzimas. Piridoxina, ácido pantoténico, ácido fólico y biotina mostraron una tras otra estar ligadas a uno o más grupos de enzimas.
Las vitaminas ilustran de forma excelente la estructura de la economía química del organismo humano. La célula humana no las fabrica, porque sirven únicamente para funciones especiales; por ello corre el razonable riesgo de buscar los suministros necesarios en la dieta. Hay otras muchas sustancias vitales que el cuerpo necesita sólo en pequeñísimas cantidades, pero que debe fabricar por sí mismo. El ATP, por ejemplo, se forma a partir de los mismos elementos con los que se producen los indispensables ácidos nucleicos. Es inconcebible que ningún organismo pueda perder alguna enzima necesaria para la síntesis del ácido nucleico y seguir vivo, porque el ácido nucleico se necesita en tales cantidades que el organismo no puede confiar en la dieta para obtener los elementos necesarios para producirlo. Y ser capaz de crear ácido nucleico implica automáticamente la capacidad de producir ATP. En consecuencia, no se conoce organismo alguno que sea incapaz de fabricar su propia ATP, y, con toda seguridad no descubrirá nunca ninguno.
Producir elementos tan esenciales como las vitaminas sería como instalar una maquinaria especial, junto a una cadena de montaje de automóviles, para tornear los pernos y las tuercas. Los pernos y las tuercas pueden obtenerse mucho más fácilmente de otro proveedor auxiliar, sin interferir para nada en la cadena de montaje; del mismo modo, el organismo puede obtener las vitaminas de su dieta, ahorrando así espacio y material.
Las vitaminas ilustran otros hechos muy importantes sobre la vida. Por lo que se sabe, todas las células vivas necesitan vitaminas del grupo B. Las coenzimas son una parte esencial del mecanismo celular de cualquier célula viva, planta, animal o bacteria. La célula puede conseguir la vitamina B de su dieta o fabricarla por sí misma, pero en cualquier caso la necesita si quiere vivir y crecer. Esta necesidad universal de un grupo determinado de sustancias constituye una impresionante prueba de la unidad esencial de todos los seres vivos y de su (posible) descendencia de una primera fuente de vida formada en el primitivo océano.
Mientras que el papel de las vitaminas del grupo B es bien conocido en la actualidad, las funciones químicas de las demás vitaminas ha encontrado siempre mayores dificultades. La única en la que se ha conseguido un avance concreto ha sido la vitamina A.
En 1925, los fisiólogos norteamericanos L. S. Fridericia y E. Holm descubrieron que las ratas alimentadas con una dieta deficitaria en vitamina A no podían desarrollar normalmente sus actividades, si había poca luz. Un examen de sus retinas demostró que eran deficitarias en una sustancia denominada «púrpura visual».
Existen dos clases de células en la retina del ojo: «bastonadas» y «cónicas». Las bastonadas se especializan en la visión con luz escasa y contienen la púrpura visual. La escasez de púrpura visual, por tanto, afecta únicamente a la visión con poca luz y su resultado es lo que se conoce como «ceguera nocturna».
En 1938, el biólogo de Harvard, George Wald, comenzó a estudiar la química de la visión con poca luz. Demostró que la luz hacía que la púrpura visual, o «rodopsina» se separase en dos componentes: la proteína llamada «opsina» y una no proteína llamada «retineno». El retineno demostró ser muy parecido en su estructura a la vitamina A.